MATLAB® Production Server™
Code Deployment

7

MATLAB

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Code Deployment
© COPYRIGHT 2012-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)
September 2021 Online only Revised for Version 4.6 (Release R2021b)
March 2022 Online only Revised for Version 5.0 (Release R2022a)

September 2022 Online only Revised for Version 5.1 (Release R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Create a Deployable Archive from MATLAB Production Server

Code
Create Deployable Archive for MATLAB Production Server 1-2
Create MATLAB Functionccii i 1-2
Create Deployable Archive with Production Server Compiler App 1-2
Customize Application and Its Appearance 1-3
Package Application 1-4
Create Deployable Archive Using compiler.build.productionServerArchive
.. 1-5
Compatibility Considerations 1-5
Package Deployable Archives with Production Server Compiler App 1-7
Create Function In MATLAB i e 1-7
Create Deployable Archive with Production Server Compiler App 1-7
Customize the Application and Its Appearance 1-8
Package the Application 1-8
Package Deployable Archives from Command Line 1-10
Execute Compiler Projects with deploytool 1-10
Package a Deployable Archive withmcc 1-10
Differences Between Compiler Apps and Command Line 1-10
Modifying Deployed Functions 1-12
Use Parallel Computing Resources in Deployable Archives 1-13
Use Profile Available in Cluster Profile Manager 1-13
Link to Exported Profile 1-13
Reuse Existing Parallel Pool in Deployable Archive 1-14
Limitations 1-14

Customizing a Compiler Project

2|

Customize an Application
Customize the Installer
Manage Required Files in Compiler Project
Sample Driver File Creation
Specify Files to Install with Application
Additional Runtime Settings

NNN[}JNN
SOk NN

Manage Support Packages,
Usinga Compiler App oot t

iii

iv

Using the Command Line 2-8

Advanced Uses of the Command Line Compiler

3|

Simplify Compilation Using Macros 3-2
MacCros 3-2
Working With Macrost e 3-2

Invoke MATLAB Build Options 3-4
Specify Full Path Names to Build MATLABCode 3-4
Using Bundles to Build MATLAB Code, 3-4

MATLAB Runtime Component Cache and Deployable Archive Embedding

.. 3-6
Overriding Default Behavior 3-7
For More Information 3-7

mcc Command Arguments Listed Alphabetically 3-8

Packaging Log and Output Folders 3-10
Functions

Apps

Persistence

Data Caching Basics 6-2
Typical Workflow for Data Caching 6-2
Configure ServertoUse Redis 6-2
Example: Increment Counter Using Data Cache 6-3

Manage Application State in Deployed Archives 6-5
Step 1: Write MATLAB Code that uses Persistence Functions 6-5
Step 2: Run Example in Testing Workflow 6-9
Step 3: Run Example in Deployment Workflow 6-10

Handle Custom Routes and Payloads in HTTP Requests 6-14
Write MATLAB Function for Web Request Handler 6-14
Configure Server for URLRoutes 6-15

Contents

End-to-End Setup for Web Request Handler 6-16

Persistence Functions

7

MATLAB Client

8|

Connect MATLAB Session to MATLAB Production Server
When to Use MATLAB Client for MATLAB Production Server
Install MATLAB Client for MATLAB Production Server
Connect MATLAB Session to MATLAB Production Server
System Requirements
Synchronous Function Execution
Supported Data Typeso oo it

OOOOOOOIOOOOOOO
WWWINNDNDN

Execute Deployed MATLAB Functions 8-5
Install MATLAB Client for MATLAB Production Server 8-5
Deploy MATLAB Functionon Servercovviiiinnnnnn... 8-5
Install MATLAB Production Server Add-On for the Deployable Archive ... 8-6
Manage Installed Add-On 8-8
Invoke Deployed MATLAB Functionc0vvvinn.... 8-9

Configure Client-Server Communication 8-11
Configure Timeoutsand Retries 8-11
Update Server Configuration 8-12

Application AccessControl 8-14
Prerequisites 8-14
Configure Access Control i, 8-14

Execute Deployed Functions Using HTTPS 8-17
Save SSL Certificate of Server 8-17
Install Add-On Using HTTPS i 8-18
Manage Default Protocol for Client-Server Communication 8-18

Manage Add-OnsS e 8-20
Install Add-Ons ot 8-20
Remove Add-OnSot 8-22
Get Information about Add-Ons 8-22
Manage Add-OnS e 8-23
Manage Access to Applications Deployed on Server 8-23

Deploy Add-Ons e 8-25
Prerequisites i 8-26
Create Standalone Executables That Use Add-Ons 8-26
Create Shared Libraries or Software Components That Use Add-Ons . . . 8-27
Create Deployable Archives That Use Add-Ons 8-28

MATLAB Client Functions

9

Streaming Functions

10|

Streaming Topics

11|

Streaming Data Framework for MATLAB Production Server Basics 11-2
Install Streaming Data Framework for MATLAB Production Server 11-2
System Requirements i 11-2
Write Streaming Analytic MATLAB Function 11-2
Process Kafka Events Using MATLAB, 11-4
Simulate Production Using Development Version of MATLAB Production

SeTVeT . . 11-4
Deploy Streaming Analytic to MATLAB Production Server 11-4

Process Kafka Events Using MATLAB 11-5
Prerequisites 11-5
Write Streaming Analytic MATLAB Function 11-5
Create Sample Stream Events 11-6
Validate Sample Data Creation 11-7
Process Stream Events with Streaming Analytic Function 11-7

Connect to Secure Kafka Cluster 11-9
Kafka Provider Properties i 11-9
Connect to Secure KafkaCluster 11-9

Test Streaming Analytic Function Using Local Test Server 11-12
Prerequisites e 11-12
Write Streaming Analytic MATLAB Function 11-12
Create Sample Streaming Data 11-12
Simulate Production Using Local Test Server 11-13

Deploy Streaming Analytic Function to MATLAB Production Server . . 11-17
Kafka Connector Specifications 11-17
Prerequisites for Running Example 11-17
Write Streaming Analytic MATLAB Function 11-18
Package Streaming Analytic Function 11-18
Deploy Streaming Analytic Function to Server 11-19
Start Kafka Connectorttt 11-19
Read Processed Data From Output Stream 11-19
Stop Kafka Connector 11-20

Obtain Kafka Event Stream Log Files 11-21
Configure kafkaStream Object Logging 11-21
Configure librdkafka Library Logging 11-22

vi Contents

Configure Logging in Deployed Applications

Provide Log Files to MathWorks Technical Support

Create a Deployable Archive from
MATLAB Production Server Code

* “Create Deployable Archive for MATLAB Production Server” on page 1-2
» “Package Deployable Archives with Production Server Compiler App” on page 1-7
» “Package Deployable Archives from Command Line” on page 1-10
* “Modifying Deployed Functions” on page 1-12
“Use Parallel Computing Resources in Deployable Archives” on page 1-13

1 cCreatea Deployable Archive from MATLAB Production Server Code

Create Deployable Archive for MATLAB Production Server

Supported platform: Windows®, Linux®, Mac

Note To create a deployable archive, you need an installation of the MATLAB Compiler SDK™
product.

This example shows how to create a deployable archive using a MATLAB function. You can then
deploy the generated archive on MATLAB Production Server.

Create MATLAB Function

In MATLAB, examine the MATLAB program that you want to package.
For this example, write a function addmatrix.m as follows.

function a = addmatrix(al, a2)

a = al + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 36 9], [147; 25
8; 36 09]).

The output is:

ans =
2 8 14
4 10 16
6 12 18

Create Deployable Archive with Production Server Compiler App

Package the function into a deployable archive using the Production Server Compiler app.
Alternatively, if you want to create a deployable archive from the MATLAB command window using a
programmatic approach, see “Create Deployable Archive Using
compiler.build.productionServerArchive” (MATLAB Compiler SDK).

1 To open the Production Server Compiler app, type productionServerCompiler at the
MATLAB prompt.

Alternatively, on the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In
Application Deployment, click Production Server Compiler. In the Production Server
Compiler project window, click Deployable Archive (.ctf).

2 In the Production Server Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

1
In the Exported Functions section, click d']j

2 In the Add Files window, browse to the example folder, and select the function you want to
package.

Click Open.

1-2

Create Deployable Archive for MATLAB Production Server

Doing so adds the function addmatrix.m to the list of main files.

4\ Production Server Compiler - untitled1.prj* — O X
o Y - ool
q}, =) = Deployable Archive () addmatri oy | @
E e Deployable Archive (.ctf) addmatrix.m &l @ ' Q'/)
lg Deplayable Archive with Excel Integration
MNew Open Save . Settings Test Package
v Project - Client
FILE TYPE EXPORTED FUNCTIONS SETTINGS | TEST | PACKAGE Y

A e N —— o

Customize Application and Its Appearance

Customize your deployable archive and add more information about the application.

* Archive information — Editable information about the deployed archive.

* Additional files required for your archive to run — Additional files required to run the
generated archive. These files are included in the generated archive installer. See “Manage
Required Files in Compiler Project” (MATLAB Compiler SDK).

+ Files packaged for redistribution — Files that are installed with your archive. These files
include:

* Generated deployable archive
* Generated readme. txt

See “Specify Files to Install with Application” (MATLAB Compiler SDK).

* Include MATLAB function signature file — Add or create a function signature file to help
clients use your MATLAB functions. See “MATLAB Function Signatures in JSON”.

1-3

1 cCreatea Deployable Archive from MATLAB Production Server Code

Archive information

addmatrix

Additional files required for your archive to run

Files packaged for redistribution
B addmatrix.ctf @ readmetxt

Include MATLAE function signature file @

Add or create a function signature file to help clients use your MATLAB functicns.

| AddEdstingFile || CresteFile |

Package Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

| Package u1

m—

Creating Binaries...

Open output folder when process completes

A &
2 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the deployment process is complete, examine the generated output.

» for_redistribution — Folder containing the archive archiveName.ctf
* for testing — Folder containing the raw generated files to create the installer

1-4

Create Deployable Archive for MATLAB Production Server

* PackaginglLog.html — Log file generated by MATLAB Compiler SDK

Create Deployable Archive Using
compiler.build.productionServerArchive

As an alternative to the Production Server Compiler app, you can create a deployable archive
using a programmatic approach.

¢ Build the deployable archive using the compiler.build.productionServerArchive
function.

buildResults = compiler.build.productionServerArchive('addmatrix.m', ...
'Verbose', 'on');

You can specify additional options in the compiler.build command by using name-value
arguments. For details, see compiler.build.productionServerArchive.

The compiler.build.Results object buildResults contains information on the build type,
generated files, included support packages, and build options.

The function generates the following files within a folder named
addmatrixproductionServerArchive in your current working directory:
* addmatrix.ctf — Deployable archive file.

* includedSupportPackages.txt — Text file that lists all support files included in the
assembly.

* mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were
not included in the application. For information on non-supported functions, see MATLAB
Compiler Limitations (MATLAB Compiler).

* readme.txt — Text file that contains packaging and deployment information.

* requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

* unresolvedSymbols.txt — Text file that contains information on unresolved symbols.

Compatibility Considerations

In most cases, you can generate the deployable archive on one platform and deploy to a server
running on any other supported platform. Unless you add operating system-specific dependencies or
content, such as MEX files or Simulink® simulations to your applications, the generated archives are
platform-independent.

See Also

productionServerCompiler | compiler.build.productionServerArchive | mcc |
deploytool

More About

. “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK)
. Production Server Compiler
. “Deploy Archive to MATLAB Production Server”

1-5

1 cCreatea Deployable Archive from MATLAB Production Server Code

. “MATLAB Function Signatures in JSON”

1-6

Package Deployable Archives with Production Server Compiler App

Package Deployable Archives with Production Server Compiler
App
Supported platform: Windows, Linux, Mac

This example shows how to create a deployable archive from a MATLAB function. You can then hand
the generated archive to a system administrator who will deploy it into MATLAB Production Server.

Create Function In MATLAB
In MATLAB, examine the MATLAB program that you want packaged.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(al, a2)
a =al + az2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 36 9], [147; 25
8; 3609]).

The output is:

ans =
2 8 14
4 10 16
6 12 18

Create Deployable Archive with Production Server Compiler App

1 Onthe MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application
Deployment, click Production Server Compiler. In the Production Server Compiler project
window, click Deployable Archive (.ctf).

4\ Production Server Compiler - untitled1.prj* — X

O
ors Y 220200 -CocH
TReR= Basemarcen | gl (OB L B2 2

_E'] Deplayable Archive with Excel Integration

MNew Open Save . Settings Test Package
v Proect Client
FILE TYPE EXPORTED FUNCTIONS SETTINGS | TEST | PACKAGE a

/_/_\/__/

Alternately, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 Inthe MATLAB Compiler SDK project window, specify the main file of the MATLAB application
that you want to deploy.

In the Exported Functions section of the toolstrip, click oo .

2 In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

1-7

1 cCreatea Deployable Archive from MATLAB Production Server Code

The function addmatrix.mis added to the list of main files.

Customize the Application and Its Appearance

You can customize your deployable archive, and add more information about the application as
follows:

(]

L]

Archive information — Editable information about the deployed archive.

Additional files required for your archive to run — Additional files required by the generated
archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project” (MATLAB Compiler SDK).

Files packaged for redistribution — Files that are installed with your application. These files
include:

* Generated deployable archive

* Generated readme. txt

See “Specify Files to Install with Application” (MATLAB Compiler SDK)

Include MATLAB function signature file — Add or create a function signature file to help
clients use your MATLAB functions.

Archive information

addmatrix

Additional files required for your archive to run

|H|

Files packaged for redistribution
B addmatrix.ctf @ readme.tt

IH

Include MATLAE function signature file

Add or create a function signature file to help clients use your MATLAB functions.

Add Existing File Create File

Package the Application

1

1-8

To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

Package Deployable Archives with Production Server Compiler App

Package Lﬁ‘

JL{(I_. Al
101 i
(I
ot
Creating Binaries...
[#] Open output folder when process completes . Cancel

A "y

2 In the Package dialog box, verify that the option Open output folder when process
completes is selected.

When the deployment process is complete, examine the generated output.

+ for redistribution — A folder containing the installer to distribute the archive.
+ for testing — A folder containing the raw generated files to create the installer
* PackaginglLog.txt — Log file generated by the packaging tool.

See Also
productionServerCompiler | mcc | deploytool

More About

. Production Server Compiler

1-9

1 cCreatea Deployable Archive from MATLAB Production Server Code

Package Deployable Archives from Command Line

1-10

In this section...

“Execute Compiler Projects with deploytool” on page 1-10
“Package a Deployable Archive with mcc” on page 1-10
“Differences Between Compiler Apps and Command Line” on page 1-10

You can package deployable archives at the MATLAB prompt or your system prompt using either of
these commands.

* deploytool invokes the Application Compiler app to execute a saved compiler project.
* mcc invokes the MATLAB Compiler™ to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool

The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

* -build project name — Invoke the correct compiler app to build the project but not generate
an installer.

* -package project name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Deployable Archive with mcc

The mcc command invokes the MATLAB Compiler and provides fine-level control over the packaging
of the deployable archive. It, however, cannot package the results in an installer.

To invoke the compiler to generate a deployable archive, use the -W CTF:component name flag with
mcc. The -W CTF:component name flag creates a deployable archive called component name.ctf.

For packaging deployable archives, you can also use the following options.

Option Description

-a filePath Add any files on the path to the generated binary.

-d outFolder Specify the folder into which the results of
packaging are written.

class{className:mfilename. ..} Specify that an additional class is generated that
includes methods for the listed MATLAB files.

Differences Between Compiler Apps and Command Line

You perform the same functions using the compiler apps, a compiler.build function, or the mcc
command-line interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is processed the
same way as if you were packaging it using mcc.

Package Deployable Archives from Command Line

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute either compiler.build or mcc than go through the compiler app
workflow.

Compiler app advantages include:

* You can perform related deployment tasks with a single intuitive interface.

* You can maintain related information in a convenient project file.

* Your project state persists between sessions.

* You can load previously stored compiler projects from a prepopulated menu.
* You can package applications for distribution.

See Also
mcc | deploytool

More About
. “Package Deployable Archives with Production Server Compiler App” on page 1-7

1-11

1 cCreatea Deployable Archive from MATLAB Production Server Code

Modifying Deployed Functions

1-12

After you have built a deployable archive, you are able to modify your MATLAB code, recompile, and
see the change instantly reflected in the archive hosted on your server. This is known as hot
deploying or redeploying a function.

To hot deploy, you must have a server created and running, with the built deployable archive located
in the server’s auto deploy folder.

The server deploys the updated version of your archive when one of the following occurs:

* Compiled archive has an updated time stamp
* Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using hot deployment. It takes a maximum
of ten seconds to undeploy a function (remove the function from being hosted).

See Also
auto-deploy-root

More About
. “Deploy Archive to MATLAB Production Server”

Use Parallel Computing Resources in Deployable Archives

Use Parallel Computing Resources in Deployable Archives

To take advantage of resources from Parallel Computing Toolbox, you can pass a cluster profile to a
MATLAB application that you deploy to MATLAB Production Server.

Cluster profiles let you define parallel computing properties for your cluster, such as information
about the cluster for your MATLAB code to use and the number of workers in a parallel pool. You
apply these properties when you create a cluster, job, and task objects in your MATLAB application.
For more information on specifying cluster profile preferences, see “Specify Your Parallel
Preferences” (Parallel Computing Toolbox). To manage cluster profiles, see “Discover Clusters and
Use Cluster Profiles” (Parallel Computing Toolbox).

You can also package MATLAB functions that use parallel language commands into a deployable
archive and deploy the archive to MATLAB Production Server. For information on creating and
sharing deployable archives, see “Create Deployable Archive for MATLAB Production Server” on page
1-2 and “Deploy Archive to MATLAB Production Server”.

Deployed MATLAB functions are able to find the parallel cluster profile through the Cluster Profile
Manager or an exported profile.

Use Profile Available in Cluster Profile Manager

When you package a MATLAB function into a deployable archive, all profiles available in the Cluster
Profile Manager are available in the archive by default. This option is useful when you do not expect
the profile to change after deployment.

Link to Exported Profile

If you expect the cluster profile to change, you can export the cluster profile first, then load the
profile either programmatically in your MATLAB code or use the - -user-data MATLAB Production
Server configuration property. For exporting the cluster profile, see “Import and Export Cluster
Profiles” (Parallel Computing Toolbox).

Load Profile Using MATLAB Code

To load the exported profile in your MATLAB function, use parallel.importProfile. For example,
the following sample code imports a profile and creates a cluster object using an exported profile.

clustername = parallel.importProfile('ServerIntegrationTest.settings');
cluster = parcluster(clustername);

Load Profile Using Server Configuration Property

To load the exported profile using the MATLAB Production Server configuration property, set the - -
user-data property to pass key-value parameters that represent the exported profile. Set the key to
ParallelProfile and the value to the path to the exported cluster profile followed by the profile
file name. For example, to load a profile called ServerIntegrationTest.settings, set the
property as follows:

--user-data ParallelProfile /sandbox/server integration/
ServerIntegrationTest.settings

1-13

1 cCreatea Deployable Archive from MATLAB Production Server Code

1-14

If you use the command line to manage the dashboard, edit the main config server configuration
file to specify the - -user-data property. If you use the dashboard to manage MATLAB Production
Server, use the Additional Data field in the Settings tab to specify the - -user-data property.

The cluster profile that you provide to the - -user-data property is automatically set as the default.
Therefore, your MATLAB code does not have to explicitly load it and you can use the default cluster
as follows:

cluster = parcluster();

Reuse Existing Parallel Pool in Deployable Archive

The following example uses gcp to check if a parallel pool of workers exists. If a pool does not exist, it
creates a pool of 4 workers using parpool.

pool = gcp('nocreate');
if isempty(pool)
disp("Creating a myCluster")
parpool('myCluster', 4);
else
disp('myCluster pool already exists')
end

Limitations

Deployable archives that use parallel computing cannot share parallel pools with other deployable
archives.

See Also
parallel.importProfile | parallel.exportProfile | gcp | parpool

Related Examples

. “Using MATLAB Runtime User Data Interface” (MATLAB Compiler SDK)
. “Create Deployable Archive for MATLAB Production Server” on page 1-2
. “Run MATLAB Parallel Server and MATLAB Production Server on Azure”

Customizing a Compiler Project

* “Customize an Application” on page 2-2
* “Manage Support Packages” on page 2-8

2 Customizing a Compiler Project

Customize an Application

You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

-

48w48

Select icon

32x32 16x16

. ‘ Library information
r . Library Name

1.0
[Use mask [] Use border / J J &

Save and Use

2-2

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.
Add Library or Application Information

You can provide further information about your application as follows:

» Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
* Version: The default value is 1.0.
* Author name: Name of the developer.
* Support email address: Email address to use for contact information.

* Company name: The full installation path for the installed MATLAB artifacts. For example, if the
company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.

* Summary: Brief summary describing the application.
» Description: Detailed explanation about the application.
All information is optional and, unless otherwise stated, is only displayed on the first page of the

installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

Customize an Application

Library information

‘ Library Name 1.0

Author Name

Email
- Select custom splash screen
Company

Set as default contact

Summary

Description

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target

system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

W Additional installer options

Default installation folder: | %ProgramfFiles® ~ |

Installation notes

Additional installation notes

Select custom logo

2-3

2 Customizing a Compiler Project

2-4

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData

Linux /usr/local

Change the Logo
The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Manage Required Files in Compiler Project

The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

Customize an Application

Sample Driver File Creation

Sample driver files are used to implement the generated component into an application in the target
language.

The following target types support sample driver file creation in MATLAB Compiler SDK:

¢ C++ shared library
+ Java® package

* .NET assembly

* Python® package

Add MATLAE files that demonstrate how to execute the exported functions. These files will be used to generate sample driver files in the
target language.

Create Mew Sample Add Existing Sample

The sample file creation feature in Library Compiler uses MATLAB code to generate sample files in
the target language. In the app, click Create New Sample to automatically generate a new MATLAB
script, or click Add Existing Sample to upload a MATLAB script that you have already written. After
you package your functions, a sample file in the target language is generated from your MATLAB
script and is saved in a folder named samples. Sample files are also included in the installer.

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you should edit it as necessary
based on the behavior of your exported functions.

The sample MATLAB files must follow these guidelines:

* The sample file must be a MATLAB script, not a function.

* The sample file code must use only exported functions. Any user-defined function called in the
script must be a top-level exported function.

* Each exported function must be in a separate sample file.
* Each call to the same exported function must be a separate sample file.

* The input parameters of the top-level function are analyzed during the process. An input
parameter cannot be a field in a struct.

* The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell
array.

* Data must be saved as a local variable and then passed to the exported function in the sample file
code.

* Sample file code should not require user interaction.

» The sample script is executed as part of the process of generating the target language sample
code. Any errors in execution (for instance, undefined variables) will prevent a sample from being
generated, although the build target will still be generated.

2-5

2 Customizing a Compiler Project

2-6

Additional considerations specific to the target language are as follows:

¢ C++ mwArray APl — varargin and varargout are not supported.
* .NET — Type-safe API is not supported.
* Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

inputl = [147; 25 8; 36 9];
input2 = [147; 25 8; 36 9];
addoutput = addmatrix(inputl,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

If you have already created a MATLAB sample file, you can include it in a compiler.build function
for the supported targets using the 'SampleGenerationFiles' option.

You can also choose not to include a sample file at all during the packaging step. If you create your
own code in the target language, you can later copy and paste it into the appropriate directory once
the MATLAB functions are packaged.

Specify Files to Install with Application

The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
See Also

More About

. “Generate a C++ mwArray API Shared Library and Build a C++ Application” (MATLAB
Compiler SDK)

Customize an Application

“Generate a C++ MATLAB Data API Shared Library and Build a C++ Application” (MATLAB
Compiler SDK)

2-7

2 Customizing a Compiler Project

Manage Support Packages

Using a Compiler App

Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

Suggested Support Packages

Package Product Motes
Digilent Analog Discovery Data Acquisition Toolbox =
DirectSound Audio Data Acquisition Toolbox

w Additional Installer Options

Defautt installation folder: | %ProgramFiles% v \DAQAudioTest\

* This program requires:

-- Digilent WaveForms from <a href="http://www.digilentinc.com” = http:/fwww.digilentinc.com« available at http:/fwww.digilentinc.com/Data/Produc
ts/WAVEFORMS/digilent. waveforms_v2 4.4, exe Select custom lago

o

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

» the support package is installed

» your code has a direct dependency on the support package

* your code is dependent on the base product of the support package

» your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of
the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line

Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

Manage Support Packages

support package folder. For example, if your function uses the 0S Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daqg\supportpackages\daqaudio -a 'C:’

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

2-9

Advanced Uses of the Command Line
Compiler

+ “Simplify Compilation Using Macros” on page 3-2

* “Invoke MATLAB Build Options” on page 3-4

* “MATLAB Runtime Component Cache and Deployable Archive Embedding” on page 3-6
“mcc Command Arguments Listed Alphabetically” on page 3-8

3 Advanced Uses of the Command Line Compiler

Simplify Compilation Using Macros

In this section...

“Macros” on page 3-2

“Working With Macros” on page 3-2

Macros

The mcc function, through its exhaustive set of options, allows you to customize the behavior of a
compiled component. If you want a simplified approach to compilation, you can use a macro to

quickly accomplish basic compilation tasks. Macros let you group several options together to perform
a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard compilation
and the multioption alternative.

Macro Bundle Creates Option Equivalence
Function Wrapper |Output
Stage ||

-1 macro option 1 Library -W lib -T link:lib

-m macro _option m Standalone application -Wmain-Tlink:exe

3-2

Working With Macros

The -m option tells the compiler to produce a standalone application. The -m macro is equivalent to
the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they provide to the
compiler.

-m Macro

Option Function

-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macros

You can change the meaning of a macro by editing the corresponding macro _option file in
matlabroot\toolbox\compiler\bundles. For example, to change the -m macro, edit the file
macro_option min the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

Simplify Compilation Using Macros

Specifying Default Macros

As the MCCSTARTUP functionality has been replaced by bundle technology, the macro default file
that resides in toolbox\compiler\bundles can be used to specify default options to the compiler.

For example, adding -mv to the macro default file causes the command:
mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

mcc -v -W 'lib:libfoo' -T link:lib foo.m

3-3

3 Advanced Uses of the Command Line Compiler

Invoke MATLAB Build Options

3-4

In this section...

“Specify Full Path Names to Build MATLAB Code” on page 3-4
“Using Bundles to Build MATLAB Code” on page 3-4

Specify Full Path Names to Build MATLAB Code

If you specify a full path name to a MATLAB file on the mcc command line, the compiler

1 Breaks the full name into the corresponding path name and file names (<path> and <file>).
2 Replaces the full path name in the argument list with “-I <path> <file>".

Specifying Full Path Names
For example:

mcc -m /home/user/myfile.m
would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example, suppose you
have two different MATLAB files that are both named myfile.m and they reside in /home/user/
dirl and /home/user/dir2. The command

mcc -m -I /home/user/dirl /home/user/dir2/myfile.m
would be equivalent to
mcc -m -I /home/user/dirl -I /home/user/dir2 myfile.m

The compiler finds the myfile.min dirl and compiles it instead of the one in dir2 because of the
behavior of the -I option. If you are concerned that this might be happening, you can specify the -v
option and then see which MATLAB file the compiler parses. The -v option prints the full path name
to the MATLAB file during the dependency analysis phase.

Note The compiler produces a warning (specified file mismatch) if a file with a full path name
is included on the command line and the compiler finds it somewhere else.

Using Bundles to Build MATLAB Code

Bundles provide a convenient way to group sets of compiler options and recall them as needed. The
syntax of the bundle option is:

-B <bundle>[:<al>,<a2>,...,<an>]

where bundle is either a predefined string such as cpplib or csharedlib or the name of a file that
contains a set of mcc command-line options, arguments, filenames, and/or other -B options.

Invoke MATLAB Build Options

A bundle can include replacement parameters for compiler options that accept names and version
numbers. For example, the bundle for C shared libraries, csharedlib, consists of:

-W lib:%1

s -T link:1lib

%

To invoke the compiler to produce the C shared library mysharedlib use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle will be replaced with the corresponding option specified to the
bundle. Use %% to include a % character. It is an error to pass too many or too few options to the

bundle.

Note You can use the -B option with a replacement expression as is at the DOS or UNIX® prompt. If
more than one parameter is passed, you must enclose the expression that follows the -B in single
quotes. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only parameter being passed. If
the example had two or more parameters, then the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0'
weekday data tic calendar toc

Available Bundle Files

Bundle File Creates Contents

cpplib C++ library -W cpplib:library name -T link:1lib

csharedlib C library -W lib:library name -T link:1lib

ccom COM component -W com:component name,className,version -T link:lib
cexcel Excel Add-in -W excel:addin _name,className,version -T link:1lib
Cjava Java package -W java:packageName,className

dotnet .NET assembly -W

dotnet:assembly name,className, framework version,sec
urity,remote type -T link:lib

3 Advanced Uses of the Command Line Compiler

MATLAB Runtime Component Cache and Deployable Archive
Embedding

In this section...

“Overriding Default Behavior” on page 3-7

“For More Information” on page 3-7

Deployable archive data is automatically embedded directly in compiled components and extracted to
a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features through
environment variables.

These variables allow you to specify the following:

* Define the default location where you want the deployable archive to be automatically extracted

* Add diagnostic error printing options that can be used when automatically extracting the
deployable archive, for troubleshooting purposes

* Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable

Purpose Notes

MCR CACHE ROOT

When set to the location of where
you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded . ctf files only.

On macOS, this variable is ignored
in MATLAB R2020a and later. The
app bundle contains the files
necessary for runtime.

MCR CACHE SIZE

When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the
“Overriding Default Behavior” on page 3-7 option.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable archive will
not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you had specified
a -C option to the command line.

3-6

MATLAB Runtime Component Cache and Deployable Archive Embedding

Overriding Default Behavior

To extract the deployable archive in a manner prior to R2008b, alongside the compiled .NET
assembly, compile using the mcc's - C option.

You might want to use this option to troubleshoot problems with the deployable archive, for example,
as the log and diagnostic messages are much more visible.

For More Information

For more information about the deployable archive, see “Deployable Archive” (MATLAB Compiler).

3 Advanced Uses of the Command Line Compiler

mcc Command Arguments Listed Alphabetically

filename[:arg[,arg]l]

command line with the contents of
filename (bundle).

Option Description Comment
-7 Display help message. Cannot be used in a deploytool app.
-a path Add path to the deployable If you specify a folder name, all files in the
archive. folder are added. If you use a wildcard (*), all
files matching the wildcard are added.
-A arch Append supported platforms to Valid only for Python, C/C++ using the
those detected automatically by = |MATLAB data array API, and Java targets.
the compiler.
arch = win64, maci64, glnxa64, or all
-b Generate Excel® compatible Requires MATLAB Compiler for Excel add-ins.
formula function. Cannot be used in a deploytool app.
-B Replace -B filename on the mcc |The file should contain only mcc command-line

options. These are MathWorks® included
options files:

* -B csharedlib: foo (C shared library)
* -B cpplib:foo (C++ library)

Cannot be used in a deploytool app.

deployable archive in generated
binaries.

-C Suppress compiling and linking of |Must be used in conjunction with the -1
the generated C wrapper code. option.
-C Direct mcc to not embed the

-d directory

Place output in specified folder.

The specified folder must already exist. Cannot
be used in a deploytool app.

-e Suppresses appearance of the MS- |Use - e in place of the -m option. Available for
DOS Command Window when Windows only. Use with -R to generate error
generating a standalone logging. Equivalent to -W WinMain -T
application. link:exe. Cannot be used in a deploytool
app.
The standalone app compiler suppresses the
MS-DOS command window by default. To
enable it, deselect Do not display the
Windows Command Shell (console) for
execution in the Additional Runtime
Settings area.
-f filename Use the specified options file, mbuild -setup is recommended. Valid for
filename, when calling mbuild. |C/C++ shared libraries, COM, and Excel
targets.
-g Generate debugging information.
-G Same as -g.

3-8

mcc Command Arguments Listed Alphabetically

Option

Description

Comment

-h filename

Specify a custom help text file.

Display help file contents at runtime using - ?
or /7. Valid for standalone applications, C/C++
shared libraries, COM, and Excel targets.

-I directory

Add folder to search path for
MATLAB files.

-j Automatically convert all .m files
to P-files before packaging.
-k Specify AES encryption key and |If you do not specify any arguments after -k,

"file=<key file path>
; Lloader=<mex_ file pat
h>ll

MEX-file loader interface to
retrieve decryption key at runtime.

mcc generates a 256-bit AES key and a loader
MEX-file.

-K Directs mcc to not delete output | Default behavior is to dispose of any partial
files if the compilation ends output if the command fails to execute
prematurely, due to error. successfully.

-1 Create a function library. Equivalent to -W lib -T link:1lib. Cannot

be used in a deploytool app.

-m Generate a standalone application. |[Equivalent to -W main -T link:exe. Cannot

be used in a deploytool app.

-M string Pass string to mbuild. Use to define compile-time options.

-n Automatically treat numeric inputs | Cannot be used in a deploytool app.
as MATLAB doubles.

-N Clear the path of all but a minimal, | Uses the following folders:

required set of folders.

* matlabroot|toolbox\matlab

* matlabroot\toolbox\local

* matlabroot\toolbox\compiler

* matlabroot\toolbox\shared\bigdata

-0 outputfile

Specify name of final output file.

Adds appropriate extension. Cannot be used in
a deploytool app.

-p directory

Add folder to compilation path in
an order-sensitive context.

Requires -N option.

-r 'path/to/icon.ico'

Embed resource icon in binary.

-Roption Specify run-time options for Valid only for standalone applications using
MATLAB Runtime. MATLAB Compiler.
option = -nojvm, -nodisplay, '-logfile
filename', -startmsg, and -completemsg
filename
-s Obfuscate folder structures and
file names in the deployable
archive (. ctf file) from the end
user.
-S Create singleton MATLAB Default for generic COM components. Valid for

Runtime.

Microsoft® Excel and Java packages.

3-9

3 Advanced Uses of the Command Line Compiler

Option Description Comment
-T Specify the output target phase Cannot be used in a deploytool app.
and type.
-u Registers COM component for Valid only for generic COM components and
current user only on development |Microsoft Excel add-ins.
machine.
-U Generate a deployable archive Equivalent to -W 'CTF'. Cannot be used in a
(.ctf file) for MATLAB Production|deploytool app.
Server.
-V Verbose; display compilation steps.
-w option Display warning messages. option = list, level, or level:string
where
level = disable, enable, error, off:string, or
on:string
-W type Control the generation of function |type = main cpplib:<string>
wrappers. lib:<string> none
com:compname, clname,version
Cannot be used in a deploytool app.
-X Ignore data files detected by For more information, see “Dependency

dependency analysis.

Analysis Using MATLAB Compiler” (MATLAB
Compiler).

-Y licensefile

Use licensefile when checking
out a MATLAB Compiler license.

The -Y flag works only with the command-line
mode.

>>Imcc -m foo.m -Y license.lic

-Z option

Specify method of including
support packages.

option = 'autodetect' (default), 'none’,
or packagename.

Packaging Log and Output Folders

By default, the deployment app places the packaging log and the Testing Files, End User Files, and
Packaged Installers folders in the target folder location. If you specify a custom location, the app
creates any folders that do not exist at compile time.

3-10

Functions

4 Functions

4-2

compiler.build.productionServerArchive

Create an archive for deployment to MATLAB Production Server or Docker

Syntax

compiler.build.productionServerArchive(FunctionFiles)
compiler.build.productionServerArchive(FunctionFiles,Name,Value)
compiler.build.productionServerArchive(opts)

results = compiler.build.productionServerArchive()

Description

compiler.build.productionServerArchive(FunctionFiles) creates a deployable archive
using the MATLAB functions specified by FunctionFiles.

compiler.build.productionServerArchive(FunctionFiles,Name,Value) creates a
deployable archive with additional options specified using one or more name-value arguments.
Options include the archive name, JSON function signatures, and output directory.

compiler.build.productionServerArchive(opts) creates a deployable archive with options
specified using a compiler.build.ProductionServerArchiveOptions object opts. You cannot
specify any other options using name-value arguments.

results = compiler.build.productionServerArchive() returns build information as a
compiler.build.Results object using any of the input argument combinations in previous
syntaxes. The build information consists of the build type, the path to the compiled archive, and build
options.

Examples

Create MATLAB Production Server Archive
Create a deployable server archive.

In MATLAB, locate the MATLAB function that you want to deploy as an archive. For this example, use
the file magicsquare.mlocated in matlabroot\extern\examples\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');

Build a production server archive using the compiler.build.productionServerArchive
command.

compiler.build.productionServerArchive(appFile);

This syntax generates the following files within a folder named
mymagicproductionServerArchive in your current working directory:

* includedSupportPackages.txt — Text file that lists all support files included in the archive.

* mymagic.ctf — Deployable production server archive file.

compiler.build.productionServerArchive

*+ mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not
included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations (MATLAB Compiler).

* readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

* requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Customize Production Server Archive
Create a production server archive and customize it using name-value arguments.

For this example, use the files addmatrix.m and subtractmatrix.mat located in matlabroot
\extern\examples\compiler.

addFile
subFile

fullfile(matlabroot, 'extern', 'examples', 'compilersdk','c cpp', 'matrix"', 'addmatrix.m');
fullfile(matlabroot, 'extern', 'examples', 'compilersdk','c cpp', 'matrix"', 'subtractmatrix.m"');

Build a production server archive using the compiler.build.productionServerArchive
command. Use name-value arguments to specify the archive name and enable verbose output.
compiler.build.productionServerArchive({addFile, subFile},...

'ArchiveName', 'MatrixArchive', ...
'Verbose', 'on');

This syntax generates the following files within a folder named
MatrixArchiveproductionServerArchive in your current working directory:

* includedSupportPackages.txt — Text file that lists all support files included in the archive.
* MatrixArchive.ctf — Deployable production server archive file.

*+ mccExcludedFiles.log — Log file that contains a list of any toolbox functions that were not
included in the application. For information on non-supported functions, see MATLAB Compiler
Limitations (MATLAB Compiler).

* readme.txt — Readme file that contains information on deployment prerequisites and the list of
files to package for deployment.

* requiredMCRProducts.txt — Text file that contains product IDs of products required by
MATLAB Runtime to run the application.

Create Multiple Production Server Archives Using Options Object

Customize multiple production server archives using a
compiler.build.ProductionServerArchiveOptions object.

For this example, use the file hello.m located in matlabroot\extern\examples\compiler.

functionFile = fullfile(matlabroot, 'extern', 'examples', 'compiler','hello.m");

Create a ProductionServerArchiveOptions object. Use name-value arguments to specify a

common output directory, disable the automatic inclusion of data files, and enable verbose output.
opts = compiler.build.ProductionServerArchiveOptions(functionFile,...
'OutputDir', 'D:\Documents\MATLAB\work\ProductionServerBatch',...

'AutoDetectDataFiles', 'off',...
'Verbose','on'")

4-3

‘l Functions

opts =
ProductionServerArchiveOptions with properties:

ArchiveName: 'hello'
FunctionFiles: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler\hello.m"}
FunctionSignatures: "'
AdditionalFiles: {}
AutoDetectDataFiles: off
SupportPackages: {'autodetect'}
Verbose: on
OQutputDir: 'D:\Documents\MATLAB\work\ProductionServerBatch'
Build the production server archive using the ProductionServerArchiveOptions object.
compiler.build.productionServerArchive(opts);
To compile using the function file houdini.m with the same options, use dot notation to modify the
FunctionFiles of the existing ProductionServerArchiveOptions object before running the
build function again.

opts.FunctionFiles = 'houdini.m';
compiler.build.productionServerArchive(opts);

By modifying the FunctionFiles argument and recompiling, you can compile multiple archives
using the same options object.

Create Microservice Docker Image Using Results

Create a microservice Docker® image using the results from building a production server archive on
a Linux system.

Install and configure Docker on your system.

Create a production server archive using magicsquare.m and save the build results to a
compiler.build.Results object.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');
buildResults = compiler.build.productionServerArchive(appFile);

Pass the Results object as an input to the compiler.package.microserviceDockerImage
function to build the Docker image.

compiler.package.microserviceDockerImage (buildResults);

The function generates the following files within a folder named
magicsquaremicroserviceDockerImage in your current working directory:

* applicationFilesForMATLABCompiler/magicsquare.ctf — Deployable archive file.
* Dockerfile — Docker file that specifies Docker run time options.
* GettingStarted.txt — Text file that contains deployment information.

For more details, see “Create Microservice Docker Image” (MATLAB Compiler SDK).

4-4

https://www.docker.com/

compiler.build.productionServerArchive

Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.mlocated in matlabroot\extern\examples\compiler.
results = compiler.build.productionServerArchive(magicsquare.m')

results =
Results with properties:

BuildType: 'productionServerArchive'
Files: {'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magic:
IncludedSupportPackages: {}
Options: [1x1 compiler.build.ProductionServerArchiveOptions]

The Files property contains the path to the deployable archive file magicsquare.ctf.

Input Arguments

FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.

Example: ["myfuncl.m", "myfunc2.m"]

Data Types: char | string | cell

opts — Production server options object
compiler.build.ProductionServerArchiveOptions object

Production server archive build options, specified as a
compiler.build.ProductionServerArchiveOptions object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Verbose', 'on

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.

Example: 'ArchiveName', 'MyMagic'

Data Types: char | string

4 Functions

4-6

AutoDetectDataFiles — Flag to automatically include data files
‘on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on"' or 'off"', or as numeric or logical 1 (true)
or O (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0n0OffSwitchState.

* Ifyou set this property to 'on', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

» If you set this property to 'off"', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles’', 'off"'

Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON”.

Example: 'FunctionSignatures', 'D:\Documents\MATLAB\work\magicapp
\signatures.json'

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.
Example: 'OutputDir', 'D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

SupportPackages — Support packages
"autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:
* ‘'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

* 'none' — No support packages are included. Using this option can cause runtime errors.

* A string scalar, character vector, or cell array of character vectors — Only the specified support
packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages

Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models', 'Deep Learning Toolbox Model for Places365-GooglLeNet Network'}

Data Types: char | string | cell

compiler.build.productionServerArchive

Verbose — Build verbosity
"off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0n0OffSwitchState.

» If you set this property to 'on', then the MATLAB command window displays progress
information indicating compiler output during the build process.

» Ifyou set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose', 'off'

Data Types: logical

Output Arguments

results — Build results
compiler.build.Results object

Build results, returned as a compiler.build.Results object. The Results object consists of:

* Build type, which is 'productionServerArchive'

» Path to the deployable archive file

* Alist of included support packages

» Build options, specified as a ProductionServerArchiveOptions object

Version History
Introduced in R2020b

See Also

compiler.build.ProductionServerArchiveOptions | compiler.build.Results |
compiler.package.microserviceDockerImage | productionServerCompiler

‘l Functions

4-8

compiler.build.ProductionServerArchiveOptions

Options for building deployable archives

Syntax

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles)
opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name, Value)

Description

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles) creates a
ProductionServerArchiveOptions object using the MATLAB functions specified by
FunctionFiles. Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function.

opts = compiler.build.ProductionServerArchiveOptions(FunctionFiles,
Name,Value) creates a ProductionServerArchiveOptions object with options specified using
one or more name-value arguments. Options include the archive name, output directory, and
additional files to include.

Examples

Create Deployable Archive Options Object
Create a ProductionServerArchiveOptions object from a function file.

For this example, use the file nagicsquare.mlocated in matlabroot\extern\examples
\compiler.

appFile = fullfile(matlabroot, 'extern', 'examples', 'compiler', 'magicsquare.m');
opts = compiler.build.ProductionServerArchiveOptions(appFile)

opts =
ProductionServerArchiveOptions with properties:

ArchiveName: 'magicsquare’
FunctionFiles: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler\magicsquare.m
FunctionSignatures: ''
AdditionalFiles: {}
AutoDetectDataFiles: on
SupportPackages: {'autodetect'}
QutputDir: '.\magicsquareproductionServerArchive'
Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.

opts.Verbose = 'on'

opts =

compiler.build.ProductionServerArchiveOptions

ProductionServerArchiveOptions with properties:

ArchiveName: 'magicsquare’
FunctionFiles: {'C:\Program Files\MATLAB\R2022b\extern\examples\compiler\magicsquare.m

FunctionSignatures: ''
AdditionalFiles: {}
AutoDetectDataFiles: on

SupportPackages: {'autodetect'}

OQutputDir: '.\magicsquareproductionServerArchive'

Verbose: on

Use the DotNETAssemblyOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.

compiler.build.productionServerArchive(opts);

Customize Deployable Archive Options Object
Create a production server archive using a ProductionServerArchiveOptions object.

Create a ProductionServerArchiveOptions object using the function files myfuncl.m and
myfunc2.m. Use name-value arguments to specify the output directory, enable verbose output, and

disable automatic detection of data files.
opts = compiler.build.ProductionServerArchiveOptions(["myfuncl.m","myfunc2.m"],...
'ArchiveName', 'MyServer',...

'OutputDir', 'D:\Documents\MATLAB\work\ProductionServer', ...
'AutoDetectDataFiles', 'off")

opts =
ProductionServerArchiveOptions with properties:

ArchiveName: 'MyServer!'
FunctionFiles: {2x1 cell}
FunctionSignatures: ''
AdditionalFiles: {}
AutoDetectDataFiles: off
SupportPackages: {'autodetect'}
OutputDir: 'D:\Documents\MATLAB\work\ProductionServer'
Verbose: off

You can modify the property values of an existing ProductionServerArchiveOptions object using
dot notation. For example, enable verbose output.

opts.Verbose = 'on'
opts =
ProductionServerArchiveOptions with properties:

ArchiveName: 'MyServer'
FunctionFiles: {2x1 cell}
FunctionSignatures: "'
AdditionalFiles: {}
AutoDetectDataFiles: off
SupportPackages: {'autodetect'}
OutputDir: 'D:\Documents\MATLAB\work\ProductionServer\'
Verbose: on

4 Functions

4-10

Use the ProductionServerArchiveOptions object as an input to the
compiler.build.productionServerArchive function to build a production server archive.

buildResults = compiler.build.productionServerArchive(opts);

Input Arguments

FunctionFiles — Files implementing MATLAB functions
character vector | string scalar | cell array of character vectors | string array

Files implementing MATLAB functions, specified as a character vector, a string scalar, a string array,
or a cell array of character vectors. File paths can be relative to the current working directory or
absolute. Files must have a .m extension.

Example: ["myfuncl.m", "myfunc2.m"]

Data Types: char | string | cell
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Verbose', 'on

ArchiveName — Name of deployable archive
character vector | string scalar

Name of the deployable archive, specified as a character vector or a string scalar. The default name
of the generated archive is the first entry of the FunctionFiles argument.

Example: 'ArchiveName', 'MyMagic'

Data Types: char | string

AutoDetectDataFiles — Flag to automatically include data files
‘on' (default) | on/off logical value

Flag to automatically include data files, specified as 'on' or 'off"', or as numeric or logical 1 (true)
or 0 (false). Avalue of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0On0ffSwitchState.

* Ifyou set this property to 'on"', then data files that you provide as inputs to certain functions
(such as load and fopen) are automatically included in the production server archive.

* Ifyou set this property to 'off', then you must add data files to the archive using the
AdditionalFiles property.

Example: 'AutoDetectDataFiles', 'off"’

Data Types: logical

FunctionSignatures — Path to JSON file
character vector | string scalar

compiler.build.ProductionServerArchiveOptions

Path to a JSON file that details the signatures of all functions listed in FunctionFiles, specified as a
character vector or a string scalar. For information on specifying function signatures, see “MATLAB
Function Signatures in JSON”.

Example: 'FunctionSignatures', 'D:\Documents\MATLAB\work\magicapp
\signatures.json'’

Data Types: char | string

OutputDir — Path to output directory
character vector | string scalar

Path to the output directory where the build files are saved, specified as a character vector or a string
scalar. The path can be relative to the current working directory or absolute.

The default name of the build folder is the archive name appended with
productionServerArchive.

Example: 'OQutputDir', 'D:\Documents\MATLAB\work\MyMagicproductionServerArchive'

SupportPackages — Support packages
'autodetect' (default) | 'none' | string scalar | cell array of character vectors | string array

Support packages to include, specified as one of the following options:

* ‘'autodetect' (default) — The dependency analysis process detects and includes the required
support packages automatically.

* 'none' — No support packages are included. Using this option can cause runtime errors.

* A string scalar, character vector, or cell array of character vectors — Only the specified support
packages are included. To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

Example: 'SupportPackages',{'Deep Learning Toolbox Converter for TensorFlow
Models', 'Deep Learning Toolbox Model for Places365-GooglLeNet Network'}
Data Types: char | string | cell

Verbose — Build verbosity
'off' (default) | on/off logical value

Build verbosity, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0On0OffSwitchState.

» Ifyou set this property to 'on"', then the MATLAB command window displays progress
information indicating compiler output during the build process.

* Ifyou set this property to 'off', then the command window does not display progress
information.

Example: 'Verbose', 'off'

Data Types: Llogical

4-11

4 Functions

Output Arguments

opts — Production server archive build options
ProductionServerArchiveOptions object

Production server archive build options, returned as a ProductionServerArchiveOptions object.

Version History
Introduced in R2020b

See Also
compiler.build.productionServerArchive

4-12

compiler.build.Results

compiler.build.Results

Compiler build results object

Description

A compiler.build.Results object contains information about the build type, generated files,
support packages, and build options of a compiler.build function.

All Results properties are read-only. You can use dot notation to query these properties.

For information on results from compiling standalone applications, Excel add-ins, or web app
archives, see compiler.build.Results for MATLAB Compiler.

For information on results from compiling C/C++ shared libraries, .NET assemblies, COM
components, Java packages, Python packages, MATLAB Production Server deployable archives, or
Excel add-ins for MATLAB Production Server, see compiler.build.Results for MATLAB Compiler
SDK.

Creation

There are several ways to create a compiler.build.Results object.

* Create a production server archive using compiler.build.productionServerArchive
(example (MATLAB Compiler SDK)).

* Create an Excel add-in for MATLAB Production Server using
compiler.build.excelClientForProductionServer (example (MATLAB Compiler SDK)).

Properties

BuildType — Build type
"productionServerArchive' | 'excelClientForProductionServer!

This property is read-only.

The build type of the compiler.build function used to generate the results, specified as a
character vector:

compiler.build Function Build Type

compiler.build.excelClientForProductio|'excelClientForProductionServer'
nServer

Data Types: char

Files — Paths to compiled files
cell array of character vectors

4-13

‘l Functions

4-14

This property is read-only.

Paths to the compiled files of the compiler.build function used to generate the results, specified
as a cell array of character vectors.

Build Type Files

Example: {'D:\Documents\MATLAB\work\MagicSquareproductionServerArchive
\MagicSquare.ctf'}

Data Types: cell

IncludedSupportPackages — Support packages
cell array of character vectors

This property is read-only.
Support packages included in the generated component, specified as a cell array of character vectors.

Options — Build options
ProductionServerArchiveOptions | ExcelClientForProductionServerOptions

This property is read-only.

Build options of the compiler.build function used to generate the results, specified as an options
object of the corresponding build type.

Build Type Options

Examples

Get Build Information from Production Server Archive

Create a production server archive and save information about the build type, archive file, included
support packages, and build options to a compiler.build.Results object.

Compile using the file magicsquare.mlocated in matlabroot\extern\examples\compiler.
results = compiler.build.productionServerArchive(magicsquare.m')

results =
Results with properties:

BuildType: 'productionServerArchive'
Files: {'D:\Documents\MATLAB\work\magicsquareproductionServerArchive\magic:
IncludedSupportPackages: {}
Options: [1x1 compiler.build.ProductionServerArchiveOptions]

compiler.build.Results

The Files property contains the path to the deployable archive file magicsquare.ctf.

Get Build Information from Excel Add-In for MATLAB Production Server

Create an Excel add-in for MATLAB Production Server and save information about the build type,
generated files, included support packages, and build options to a compiler.build.Results
object.

Build a MATLAB Production Server archive using the file magicsquare.m located in matlabroot
\extern\examples\compiler. Save the output as a compiler.build.Results object
serverBuildResults.

serverBuildResults = compiler.build.productionServerArchive('magicsquare.m');
Build the Excel add-in using the serverBuildResults object.
results = compiler.build.excelClientForProductionServer(serverBuildResults)

results =
Results with properties:

BuildType: 'excelClientForProductionServer'
Files: {1x1 cell}
IncludedSupportPackages: {}
Options: [1x1 compiler.build.ExcelClientForProductionServerQOptions]

The Files property contains the paths to the following compiled files:

* magicsquare.dll
* magicsquare.bas
* magicsquare.xla

Note The files magicsquare.bas and magicsquare.xla are included in Files only if you enable
the 'GenerateVisualBasicFile' option in the
compiler.build.excelClientForProductionServer command.

Version History
Introduced in R2020b

See Also
compiler.build.productionServerArchive |
compiler.build.excelClientForProductionServer

4-15

4 Functions

4-16

productionServerCompiler

Test, build and package functions for use with MATLAB Production Server

Syntax

productionServerCompiler
productionServerCompiler project name

Description

productionServerCompiler opens the Production Server Compiler app for the creation of a new
compiler project.

productionServerCompiler project name opens the Production Server Compiler app with the
project preloaded.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

Input Arguments

project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Version History
Introduced in R2014a

-build and -package options will be removed
Warns starting in R2020a

The -build and - package options will be removed. To generate deployable archives, use the
compiler.build.productionServerArchive function, or the mcc command, or the Production
Server Compiler app.

deploytool

deploytool

Open a list of application deployment apps

Syntax

deploytool
deploytool project name

Description
deploytool opens a list of application deployment apps.

deploytool project name opens the appropriate deployment app with the project preloaded.

Examples

Open a List of Application Deployment Apps

Open the list of apps.
deploytool

Input Arguments

project_name — name of the project to be opened
character array or string

Name of the project to be opened by the appropriate deployment app, specified as a character array
or string. The project must be on the current path.

Version History

-build and -package options will be removed
Warns starting in R2020a

The -build and - package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

4-17

4 Functions

4-18

mcCcC

Compile MATLAB functions for deployment

Syntax
mcc

mcc options mfilenamel mfilename2 ... mfilenameN
mcc('options', 'mfilename’)

mcc -W CTF:archive name -U options mfilenamel mfilename2 ... mfilenameN

mcc -W mpsxl:addin _name,className,version input marshaling flags
output marshaling flags -T link:lib options mfilenamel mfilename2 ...
mfilenameN

Description

Other mcc Topics

This topic describes mcc options for use with MATLAB Compiler SDK for MATLAB Production Server.
For information on compiling:

+ standalone applications, Excel add-ins, or Hadoop® jobs, see mcc

¢ C/C++ shared libraries, .NET assemblies, Java packages, or Python packages, see mcc

General Usage

mcc options mfilenamel mfilename2 ... mfilenameN compiles the functions as specified by
the options. The options used depend on the intended results of the compilation.

mcc('options', 'mfilename') compiles the function as specified by the options. Specify
filenames, options, and option parameters in single quotes.

Deployable Archive for MATLAB Production Server

mcc -W CTF:archive name -U options mfilenamel mfilename2 ... mfilenameN
instructs the compiler to create a deployable archive (. ctf file) for use with a MATLAB Production
Server instance.

The syntax also creates the server-side deployable archive (. ctf file) for Microsoft Excel add-ins.

Excel Add-In for MATLAB Production Server

mcc -W mpsxl:addin name,className,version input marshaling flags

output marshaling flags -T link:lib options mfilenamel mfilename2 ...
mfilenameN creates a client-side Microsoft Excel add-in from the specified files that can be used to
send requests to MATLAB Production Server from Excel. Creating the client-side add-in must be
preceded by creating a server-side deployable archive (. ctf file) from the specified files. A purely
client side add-in is not viable.

* addin name — Specifies the name of the add-in.

mcc

» className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the addin name as the default.

* version — Specifies the version of the add-in specified as major.minor.
* major — Specifies the major version number. If you do not specify a version number, mcc uses
the latest version.

* minor — Specifies the minor version number. If you do not specify a version number, mcc uses
the latest version.

* 1input marshaling flags — Specifies options for how data is marshaled between Microsoft
Excel and MATLAB.

* -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled into NaN in
MATLAB. If you do not specify this flag, blanks are marshaled into 0.

* -convertDateToString — Specifies that dates in Microsoft Excel are marshaled into
MATLAB character vectors. If you do not specify this flag, dates are marshaled into MATLAB
doubles.

* output marshaling flags — Specifies options for how data is marshaled between MATLAB
and Microsoft Excel.

* -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0 in Microsoft
Excel. If you do not specify this flag, NaN is marshalled into #QNAN in Visual Basic®.

* -convertNumericToDate — Specifies that MATLAB numeric values are marshaled into

Microsoft Excel dates. If you do not specify this flag, Microsoft Excel does not receive dates as

output.
Examples
Create a standalone application and include MATLAB preferences
mcc -m helloWorld.m -a C:\Users\someuser\AppData\Roaming\MathWorks\MATLAB\R2022b\matlab.mlsettin
Create a deployable archive for MATLAB Production Server
mcc -W CTF:myDeployableArchive -U mymagic.m
Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchive,myExcelClass,version=1.0"' mymagic.m

Input Arguments

mfilenamel mfilename2 ... mfilenameN — Files to be compiled
list of file names

One or more files to be compiled, specified as a space-separated list of file names. The first file is
used as the entry point for the compiled artifact.

options — Options for customizing the output
al|-b|-B|-c|-Cld|-f]-g|-G|-I|j|-k[-K|[-m[-M|n|-N|-o[-p|-r[-R|-s[-S[-T|-u|-U|-
v|i-w|-W|X]|Y]|-Z

Options for customizing the output, specified as a list of character vectors or string scalars.

4-19

4 Functions

4-20

-a

Add files to the deployable archive using -a filepath to specify the files to be added. Multiple -
a options are permitted.

Also, add MATLAB preferences to a deployed application using -a path\to
\mymatlab.mlsettings to specify the preferences to be added.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files. For more details, see “Access Files in Packaged Applications” (MATLAB
Compiler SDK).

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in . /testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .munder ./testdir are added to the deployable archive
and subfolders of . /testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the
application is executed. You can use the isdeployed function to determine whether the
application is being run in deployed mode, and adjust the path accordingly. The -a option also
creates a .auth file for authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

mcc

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The
same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

-A

Append supported platforms to those detected automatically by the compiler. Use

-A arch

to add the platform designated by arch to the list of compatible platforms. Valid platforms are
win64, maci64, glnxa64, and all. The -A option only applies to Python, C/C++ using the
MATLAB data array API, and Java targets.

Running the component on an incompatible platform will result in an unsupported platform error
message and list compatible platforms.

-b
Generate a Visual Basic file (. bas) containing the Microsoft Excel Formula Function interface to

the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

-B
Replace the file on the mcc command line with the contents of the specified file. Use
-B filename[:<al>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include
replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” (MATLAB Compiler SDK).

-C

When used in conjunction with the - 1 option, suppresses compiling and linking of the generated C
wrapper code. The - ¢ option cannot be used independently of the -1 option.

-C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
-d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder. The specified folder must already exist.
-e

Use -e in place of the -m option to generate a standalone Windows application that does not open
a Windows command prompt on execution. -e is equivalent to -W WinMain -T link:exe.

4-21

4 Functions

4-22

This option works only on Windows operating systems.
-f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

-9, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in

the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

-h

Specify a custom help text file. This option applies to standalone applications, C/C++ shared
libraries, COM, and Excel targets. Use

-f filename

to include filename as the custom help text file. Display help file contents by calling the
application at the command line with the - ? or /? argument.

-1

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directoryl> -I <directory2>

sets up the search path so that directoryl is searched first for MATLAB files, followed by
directory?2. This option is important for standalone compilation where the MATLAB path is not
available.

If used in conjunction with the -N option, the - I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

-]

Automatically convert all . m files to P-files before packaging. The - j option generates a P-code file
with a . p extension for each .m file included in the mcc command.

P-code files are an obfuscated, execute-only form of MATLAB code. For more details, see pcode.
-k

Specify an AES encryption key and a MEX-file loader interface to retrieve the decryption key at
runtime.

Use

-k "file=<key file path>;loader=<mex file path>"

mcc

to specify paths to the key file and MEX-file.

The key file must be in one of the following supported formats:

* Binary 256-bit AES key, with a 32 byte file size

* Hex encoded AES key, with a 64 character file size

The loader MEX-file must be an interface with the following arguments:

* prhs[0] — Input, char array specified as the static value 'getKey'

* prhs[1] — Input, char array specified as the CTF component UUID

* plhs[0] — Output, 32 byte UINT8 numeric array or 64 byte HEX encoded char array

If you do not specify any arguments after -k, mcc generates a 256-bit AES key and a loader MEX-
file that can be used for demonstration purposes.

-K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

-1

Generate a function library. -1 is equivalent to -W 1ib -T 1link:lib. You cannot use this option
in a deploytool app.

Generate a standalone application. -m is equivalent to -W main -T link:exe. You cannot use
this option in a deploytool app.

-M
Define compile-time options. Use
-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.

To pass options such as /bigobj, delineate the string according to your platform.

Platform Syntax

MATLAB -M 'COMPFLAGS=$COMPFLAGS /bigobj'
Windows command prompt -M COMPFLAGS="$COMPFLAGS /bigobj"
Linux and macOS command line -M CFLAGS='$CFLAGS /bigobj"

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

4-23

4 Functions

4-24

=N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

* matlabroot|toolbox\matlab

* matlabroot\toolbox\local

* matlabroot\toolbox\compiler

* matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

When using the —N option, use the —I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the —p option to conditionally include folders and their
subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

-0
Specify the name of the final executable (standalone applications only). Use
-0 outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, . exe for Windows standalone
applications).

-p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot

\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

+ Ifafolder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

+ Ifafolder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -1 to force its inclusion.)

-r
Embed resource icon in binary. The syntax is as follows:

-r 'path/to/my icon.ico'
-R

Provide MATLAB Runtime options that are passed to the application at initialization time.

mcc

Note This option is relevant only when building standalone applications or Excel add-ins using
MATLAB Compiler. If you specify the -R option for libraries created from MATLAB Compiler SDK,
mcc still compiles and generates the results, but the -R option doesn't apply to these libraries and
does not do anything.

The syntax is as follows:

-R option

Option Description Target

'- Specify a log file name. The file is created in MATLAB Compiler
logfile, |the application folder at runtime and contains

filename |information about MATLAB Runtime

' initialization and all text piped to the command
window. Option must be in single quotes. Use
double quotes when executing the command
from a Windows Command Prompt.

- Suppress the MATLAB nodisplay run-time MATLAB Compiler
nodispla |warning. On Linux, open MATLAB Runtime

y without display functionality.

-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler

'- Customizable user message displayed at MATLAB Compiler Standalone
startmsg |initialization time. For more details, see . Applications

,message

'- Customizable user message displayed when MATLAB Compiler Standalone
complete |initialization is complete. For more details, Applications

msg,mess |see .

age'

- Limit MATLAB to a single computational MATLAB Compiler

singleCo |thread.

mpThread

- Use Mesa Software OpenGL® for rendering. MATLAB Compiler

software

opengl

Caution When running on macOS, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call tomclInitializeApplication must occur before
calling mclRunMain.

=S

Obfuscate folder structures and file names in the deployable archive (. ctf file) from the end user.
Optionally encrypt additional file types.

The -s option directs mcc to place user code and data contained in .m, .p, v7.3 .mat, and MEX
files into a user package within the CTFE. During runtime, MATLAB code and data is decrypted and
loaded directly from the user package rather than extracted to the file system. MEX files are
temporarily extracted from the user package before being loaded.

4-25

4 Functions

To manually include additional file types in the user package, add each file type in a separate
extension tag to the file matlabroot/toolbox/compiler/
advanced package supported files.xml.

The following is not supported:

e ver function
* Qut-of-process MATLAB Runtime (C++ shared library for MATLAB Data Array)
* Out-of-process MEX file execution (mexhost, feval, matlab.mex.MexHost)

» -S

Create a single MATLAB Runtime instance that is shared across all class instances.

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path, and a base workspace for each function in the class. If multiple instances of a class
are created, each instance gets an independent context. This ensures that changes made to the
global or base workspace in one instance of the class does not affect other instances of the same
class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instancel creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime |Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton MATLAB
Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.

COM component * Using the Library Compiler app, click Settings
and add -S to the Additional parameters
passed to MCC field.

+ Using mcc, pass the -S flag.

Java package

. -T

Specify the output target phase and type. If not specified, mcc uses the default type for the target
specified by the -W option.

Use the syntax -T target to define the output type.

Target Description

compile:exe Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a standalone application.

4-26

mcc

Target Description

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

link:1lib Same as compile: lib and also link object
files into a shared library or DLL.

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

-U

Build deployable archive (. ctf file) for MATLAB Production Server.
-V

Display verbose output. Output displays the compilation steps, including:

* MATLAB Compiler version number

* Source file names as they are processed

* Names of the generated output files as they are created
* Invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
-w

Display warning messages. Use the syntax
-w option [:<msg>]

to control the display of warnings.

Syntax Description

-w list List the compile-time warnings that have abbreviated
identifiers, together with their status.

-w enable Enable all compile-time warnings.

-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disab'le action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

-w error[:<string>] Treat specific compile-time and runtime warnings
associated with <string> as an error. Omit the optional
<string> to apply the error action to all compile-time
and runtime warnings.

4-27

4 Functions

Syntax Description

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings. This option is enabled by default.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
warning off
end
To turn on warnings for deployed applications, you write:
if isdeployed

warning on
end

You can also specify multiple -w options.
For example, if you want to disable all warnings except repeated file, you write:
-w disable -w enable:repeated file

When you specify multiple -w options, they are processed from left to right.
o =W

Control the generation of function wrappers. Use the syntax
-W type

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

Target Syntax

Note Replace single quotes with double when executing the command from a Windows Command
Prompt.

. =X
Use -X to ignore data files read by common MATLAB file I/O functions during dependency

analysis. For more information, see “Dependency Analysis Using MATLAB Compiler” (MATLAB
Compiler). For examples on how to use the - X option, see %#exclude.

. -y

Use

4-28

mcc

-Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>Imcc -m foo.m -Y license.lic

e -Z
Use

-Z option

to specify the method of adding support packages to the deployable archive.

Syntax

Description

-Z 'autodetect'

The dependency analysis process detects and
includes the required support packages
automatically. This is the default behavior of
mcc.

-Z 'none'

No support packages are included. Using this
option can cause runtime errors.

-Z packagename

Only the specified support package is
included. To specify multiple support
packages, use multiple -Z inputs.

Note To list installed support packages or those used by a specific file, see
compiler.codetools.deployableSupportPackages.

Tips

See Also

4-29

Apps

5 Apps

Production Server Compiler

Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB functions. It
also packages MATLAB functions into archives for deployment to MATLAB Production Server.

5-2

Production Server Compiler

4\ Production Server Compiler - untitled1.prj” - O d

COMPILER

Deployable Archive (.ctf)

2 O o

Archive information

‘ Archive Name 1.0

Class Name Method Mame

© Class1

Client configuration

Default Server URL
® MNone

Protocol: Host: Port:
O MATLAB Production Server URL: [hitpi/d | |localhost | [oor0 |

O Provide your own URL: | |

Advanced Options

Time the client waits before it times cut: Seconds
Maximum size of the response the client accepts: MB

Provide an optional self-signed certificate for https: | | | Browse... |

Additional files required for your archive to run (Server only)

Files installed with your archive

Server

B .ctf @ readme.txt

[+]

Client

[+]

[[] Register the resulting component for you only on the development machine

5 Apps

Open the Production Server Compiler App

* MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
* MATLAB command prompt: Enter productionServerCompiler.

Examples

. “Create Deployable Archive for MATLAB Production Server” on page 1-2
. “Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server”
. “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK)

Parameters

type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.
Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Production Server Compiler

Folder where files for building a custom installer are stored are stored as a character array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

Programmatic Use

productionServerCompiler

Version History
Introduced in R2013b

See Also

Topics

“Create Deployable Archive for MATLAB Production Server” on page 1-2

“Create and Install a Deployable Archive with Excel Integration for MATLAB Production Server”
“Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK)

3-5

Persistence

6 Persistence

Data Caching Basics

6-2

Persistence provides a mechanism to cache data between calls to MATLAB code running on a server
instance. A persistence service runs separately from the server instance and can be started and
stopped manually. A connection name links a server instance to a persistence service. A persistence
service uses a persistence provider to store data. Currently, Redis is the only supported persistence
provider. The connection name is used in MATLAB application code to create a data cache in the

linked persistence service.

Typical Workflow for Data Caching

Steps

Command Line

Dashboard

1. Create file
mps_cache config

Manually create a JSON file and place it
in the config folder of the server
instance.

Automatically created.

2. Start persistence
service

Use mps - cache to start a persistence
service.

For testing purposes, you can create a
persistence service controller object
using mps.cache.control.

* Create a persistence service.

* Add the persistence service to
a server instance using a
connection name.

» Start the persistence service.

¢ Attach the connection
associated with a persistence
service to a server instance.

3. Create a data cache

Use mps.cache.connect to create a
data cache.

Use mps.cache.connect to
create a data cache.

Configure Server to Use Redis

Create Redis Configuration File

Before starting a persistence service for an on-premises server instance from the system command
prompt, you must create a JSON file called mps _cache config and place it in the config folder of
the server instance. If you use the dashboard to manage an on-premises server instance and for
server deployments on the cloud, the mps cache config file is automatically created on server

creation.

mps_cache_config

"Connections": {

}
}

}

"<connection name>": {
"Provider": "Redis",
"Host": "<hostname>",
"Port": <port_number>,
"Key": <access key>

Specify the <connection name>, <hostname>, and <port number> in the JSON file. The host
name can either be localhost or a remote host name obtained from an Azure® Redis cache

Data Caching Basics

resource. If you use Azure Cache for Redis, you must specify an access key. To use an Azure Redis
cache, you need a Microsoft Azure account.

You can specify multiple connections in the file mps cache config. Each connection must have a
unique name and a unique (host, port) pair. If you are using the persistence service through the
dashboard, the file mps cache config is automatically created in the config folder of the server
instance.

Install WSL for Server Instances Running on Windows

If your MATLAB Production Server instance runs on a Windows machine, you require additional
configuration. The following configuration is not required for server instances that run on Linux and
macOS.

* You need to install Windows Subsystem for Linux (WSL). For details on installing WSL, see
Microsoft documentation.

» If the MATLAB Production Server software is installed on a network drive, you must mount the
network drive in WSL.

Example: Increment Counter Using Data Cache

This example shows you how to use persistence to increment a counter using a data cache. The
example presents two workflows: a testing workflow that uses the MATLAB and a deployment
workflow that requires an active server instance.

Testing Workflow in MATLAB Compiler SDK

1 Create a persistence service that uses Redis as the persistence provider and start the service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519)
start(ctrl)

2 Write MATLAB code that creates a cache and then updates a counter using the cache. Name the
file myCounter.m

myCounter.m

function x = myCounter(cacheName, connectionName)

% create a data cache
Cc = mps.cache.connect(cacheName, 'Connection', connectionName);

% if the key 'count' doesn't exist yet, initialize it
if isKey(c, 'count') == false
put(c, 'count',0)
else
value = get(c, 'count');
% increment the counter
put(c, 'count', value+l);
end
x = get(c, 'count');
3 Test the counter.

for i = 1:5

y(i) = myCounter('myCache', 'myRedisConnection');
end
y

6-3

https://docs.microsoft.com/windows/wsl/

6 Persistence

6-4

0 1 2 3 4
Deployment Workflow Using MATLAB Production Server

Before you deploy code that uses persistence to a server instance, start the persistence service and
attach it to the server instance. You can start the persistence service from the system command line
using mps - cache or follow the steps in the dashboard. This example assumes your server instance

uses the default host and port: Llocalhost:9910.

1 Package the file myCounter.m using the Production Server Compiler app or mcc.

2 Deploy the archive (myCounter. ctf file) to the server.

3 Test the counter. You can make calls to the server using the “RESTful API for MATLAB Function
Execution” from the MATLAB desktop.

rhs = {['myCache'], ['myRedisConnection']};
body = mps.json.encoderequest(rhs, 'Nargout',1);

options = weboptions;

options.ContentType = 'text';

options.MediaType = 'application/json';

options.Timeout = 30;

for i = 1:5

response = webwrite('http://localhost:9910/myCounter/myCounter', body, options);
x(1i) = mps.json.decoderesponse(response);

end

x = [x{:}]
X =
0 1 2 3 4
As expected, the results from the testing environment workflow and the deployment environment

workflow are the same.

See Also

mps.cache.Controller | mps.cache.DataCache | mps.sync.TimedMATFileMutex |
mps.sync.TimedRedisMutex | mps.cache.control | mps.cache.connect | mps.sync.mutex

More About
. “Manage Application State in Deployed Archives”

Manage Application State in Deployed Archives

Manage Application State in Deployed Archives

This example shows how to manage persistent data in application archives deployed to MATLAB
Production Server. It uses the MATLAB Production Server “RESTful API for MATLAB Function
Execution” and JSON to connect one or more instances of a MATLAB app to an archive deployed on
the server.

MATLAB Production Server workers are stateless. Persistence provides a mechanism to maintain
state by caching data between multiple calls to MATLAB code deployed on the server. Multiple
workers have access to the cached data.

The example describes two workflows.

1 A testing workflow for testing the functionality of the application in a MATLAB desktop
environment before deploying it to the server.

2 A deployment workflow that uses an active MATLAB Production Server instance to deploy the
archive.

To demonstrate how to use persistence, this example uses the traveling salesman problem, which
involves finding the shortest possible route between cities. This implementation stores a persistent
MATLAB graph object in the data cache. Cities form the nodes of the graph and the distances
between the cities form the weights associated with the graph edges. In this example, the graph is a
complete graph. The testing workflow uses the local version of the route-finding functions. The
deployment workflow uses route-finding-functions that are packaged into an archive and deployed to
the server. The MATLAB app calls the route-finding functions. These functions read from and write
graph data to the cache.

The code for the example is located at $MPS INSTALL/client/matlab/examples/persistence/
TravelingSalesman, where $MPS INSTALL is the location where MATLAB Production Server is
installed.

To host a deployable archive created with the Production Server Compiler app, you must have a
version of MATLAB Runtime installed that is compatible with the version of MATLAB you use to
create your archive. For more information, see “Supported MATLAB Runtime Versions for MATLAB
Production Server”.

1. “Step 1: Write MATLAB Code that uses Persistence Functions” on page 6-5

2. “Step 2: Run Example in Testing Workflow” on page 6-9
3. “Step 3: Run Example in Deployment Workflow” on page 6-10

Step 1: Write MATLAB Code that uses Persistence Functions
1 Write a function to initialize persistent data

Write a function to check whether a graph of cities and distances exists in the data cache. If the
graph does not exist, create it from an Excel spreadsheet that contains the distance data and
write it to the cache. Because only one MATLAB Production Server worker at a time can perform
this write operation, use a synchronization lock to ensure that data initialization happens only
once.

Connect to the cache that stores the distance data or create it if it does not exist using
mps.cache.connect. Acquire a lock on a mutex using mps.sync.mutex for the duration of the
write operation. Release the lock once the data is written to the cache.

6 Persistence

6-6

Initialize the distance data using the loadDistanceData function.

function tf = loadDistanceData(connectionName, cacheName)
c = mps.cache.connect(cacheName, 'Connection',connectionName);
tries = 0;

while isKey(c, 'Distances') == false && tries < 6
1k = mps.sync.mutex('DistanceData', 'Connection',connectionName);
if acquire(lk,10)
if isKey(c, 'Distances') == false
g = initDistanceData('Distances.xlsx"');
c.Distances = g;

end
release(lk);
end
tries = tries + 1;
end
tf = isKey(c, 'Distances');
end

Write functions to read persistent data

Write a function to read the distance data graph from the data cache. Because reading data from
the cache is an idempotent operation, you do not need to use synchronization locks. Connect to
the cache using mps.cache.connect and then retrieve the graph.

Read the graph from the cache and convert it into a cell array using the listDestinations
function.

Calculate the shortest possible route using the findRoute function. Use the nearest neighbor
algorithm, by starting at a given city and repeatedly visiting the next nearest city until all cities
have been visited.

function destinations = listDestinations()
¢ = mps.cache.connect('TravelingSalesman', 'Connection', 'ScratchPad"');
if loadDistanceData('ScratchPad', 'TravelingSalesman') == false
error('Failed to load distance data. Cannot continue.');
end

g = c.Distances;
destinations = table2array(g.Nodes);
end

function [route,distance] = findRoute(start,destinations)
Cc = mps.cache.connect('TravelingSalesman', 'Connection', 'ScratchPad"');
if loadDistanceData('ScratchPad', 'TravelingSalesman') == false
error('Failed to load distance data. Cannot continue.');
end

g = c.Distances;
route = {start};
distance = 0;

current = start;

while ~isempty(destinations)
minDistance = Inf;
nextSegment = {};
for n = 1:numel(destinations)

Manage Application State in Deployed Archives

[p,d] = shortestpath(g,current,destinations{n});
if d < minDistance
nextSegment
minDistance
end

p(2:end);
d;

end

current = nextSegment{end};
distance = distance + minDistance;
destinations = setdiff(destinations,current);
route = [route nextSegment];
end
end

Write a function to modify persistent data

Write a function to add a new city. Adding a city modifies the graph stored in the data cache.
Because this operation requires writing to the cache, use the mps.sync.mutex function
described in Step 1 for locking. After adding a city, check that the graph is still complete by
confirming that the distance between every pair of cities is known.

Add a city using the addDestination function. Adding a city adds a new graph node name
along with new edges connecting this node to all existing nodes in the graph. The weights of the
newly added edges are given by the vector distances. destinations is a cell array of
character vectors that has the names of other cities in the graph.

function count = addDestination(name, destinations, distances)

count = 0;

c = mps.cache.connect('TravelingSalesman', 'Connection', 'ScratchPad"');

if loadDistanceData('ScratchPad', 'TravelingSalesman') == false
error('Failed to load distance data. Cannot continue.');

end

1k = mps.sync.mutex('DistanceData', 'Connection', 'ScratchPad"');
if acquire(lk,10)

g = c.Distances;

newDestinations = setdiff(g.Nodes.Name, destinations);

if ~isempty(newDestinations)

error('MPS:Example:TSP:MissingDestinations',
"Add distances for missing destinations: %s',
strjoin(newDestinations,', '));
end

src = repmat({name},1l,numel(destinations));
g = addedge(g, src, destinations, distances);
c.Distances = g;
release(1lk);
count = numnodes(g);
end
end

Write a MATLAB app to call route-finding functions

Write a MATLAB app that wraps the functions described in Steps 2 and 3 in their respective
proxy functions. The app allows you to specify a host and a port. For testing, invoke the local
version of the route-finding functions when the host is blank and the port has the value 0. For the
deployment workflow, invoke the deployed functions on the server running on the specified host
and port. Use the webwrite function to send HTTP POST requests to the server.

6 Persistence

For more information on how to write an app, see “Create and Run a Simple App Using App
Designer” (MATLAB).

Write the proxy functions findRouteProxy, addDestinationProxy, and
listDestinationProxy for the findRoute, addDestination, and listDestination
functions, respectively.

function destinations = listDestinationsProxy(app)
if isempty(app.HostEditField.Value) && ...
app.PortEditField.Value <= 0
destinations = listDestinations();
return;
end

listDestinations OPTIONS = weboptions('MediaType', 'application/json', 'Timeout',6¢€
listDestinations HOST = app.HostEditField.Value;
listDestinations PORT = app.PortEditField.Value;
noInputJSON = '{ "rhs": [], "nargout": 1 }°';
destinations JSON = ...
webwrite(sprintf('http://%s:%d/TravelingSalesman/listDestinations',listDestinatic
if iscolumn(destinations JSON), destinations JSON = destinations JSON'; end
destinations RESPONSE = mps.json.decoderesponse(destinations JSON);
if isstruct(destinations RESPONSE)
error(destinations RESPONSE.id,destinations RESPONSE.message);
else
if nargout > 0, destinations = destinations RESPONSE{1}; end
end
end

function [route,distance] = findRouteProxy(app,start,destinations)
if isempty(app.HostEditField.Value) && ...
app.PortEditField.Value <= 0

[route,distance] = findRoute(start,destinations);

return;
end
findRoute OPTIONS = weboptions('MediaType', 'application/json', 'Timeout',60, 'Conte
findRoute HOST = app.HostEditField.Value;
findRoute PORT = app.PortEditField.Value;
start destinations DATA = {};
if nargin > 0, start destinations DATA
if nargin > 1, start destinations DATA
route distance JSON = ...

webwrite(sprintf('http://%s:%d/TravelingSalesman/findRoute', findRoute HOST, fi
if iscolumn(route distance JSON), route distance JSON = route distance JSON'; enc
route distance RESPONSE = mps.json.decoderesponse(route distance JSON);
if isstruct(route distance RESPONSE)

error(route distance RESPONSE.id, route distance RESPONSE.message);
else

if nargout > 0, route = route distance RESPONSE{1}; end

if nargout > 1, distance = route distance RESPONSE{2}; end

[start destinations DATA { start } 1; e
[start destinations DATA { destinations

end
end

function count = addDestinationProxy(app, name, destinations,distances)
if isempty(app.HostEditField.Value) && ...
app.PortEditField.Value <= 0
count = addDestination(name, destinations,distances);
return;

6-8

Manage Application State in Deployed Archives

end

addDestination OPTIONS = weboptions('MediaType', 'application/json', 'Timeout',60,"
addDestination HOST = app.HostEditField.Value;
addDestination PORT = app.PortEditField.Value;
name destinations distances DATA = {};
if nargin > 0, name destinations distances DATA
if nargin > 1, name destinations distances DATA
if nargin > 2, name destinations distances DATA
count JSON = ...
webwrite(sprintf('http://%s:%d/TravelingSalesman/addDestination',addDestinati
if iscolumn(count JSON), count JSON = count JSON'; end
count RESPONSE = mps.json.decoderesponse(count JSON);
if isstruct(count RESPONSE)
error(count RESPONSE.id,count RESPONSE.message);
else
if nargout > 0, count = count RESPONSE{1l}; end
end

[name _destinations distances [
[name _destinations distances [
[name _destinations distances [

end

Step 2: Run Example in Testing Workflow

Test the example code in the MATLAB desktop environment. To do so, copy the all the files located at
$MPS INSTALL/client/matlab/examples/persistence/TravelingSalesman to a writable
folder on your system, for example, /tmp/persistence example. Start the MATLAB desktop and
set the current working directory to /tmp/persistence example using the cd command.

For testing purposes, control a persistence service from the MATLAB desktop with the
mps.cache.control function. This function returns an mps.cache.Controller object that
manages the life cycle of a local persistence service.

1 Create an mps.cache.Controller object for a local persistence service that uses the Redis
persistence provider.

>> ctrl = mps.cache.control('ScratchPad', 'Redis', 'Port', 8675);

When active, this controller enables a connection named ScratchPad. Connection names link
caches to storage locations in persistence services. The mps.cache.connect function requires
connection names to create data caches. The MATLAB Production Server administrator sets
connection names in the cache configuration file mps cache config. For details, see
“Configure Server to Use Redis” on page 6-2. By using the same connection names in MATLAB
desktop sessions, you enable your code to move from development through testing to production
without change.

2 Start the persistence service using start.

>> start(ctrl);
3 Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman
The app starts with default values for Host and Port.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

6-9

6 Persistence

4 Traveling Salesman - O ot

Host Part 0

Find Route Add City

Amherst v
Available Destinations Selected Destinations
Boston Gloucester
Brockton . Provincetown
Dedham Wilbraham
Dover Winchendon
Lowell
Newton
Springfield | Compute Path |

Load Cities

Distance 319 Miles

Path Amherst, Wilbraham, Winchendon, Gloucester, Provincetown

4 When you close the app, stop the persistence service using stop. Stopping a persistence service
will delete the data stored by that service.

>> stop(ctrl);

Step 3: Run Example in Deployment Workflow

To run the example in the deployment workflow, copy the all the files located at $MPS INSTALL/
client/matlab/examples/persistence/TravelingSalesman to a writeable folder on your
system, for example, /tmp/persistence example. Start the MATLAB desktop and set the current
working directory to /tmp/persistence example using the MATLAB cd command.

The deployment workflow manages the lifetime of a persistence service outside of a MATLAB desktop
environment and invokes the route-finding functions packaged in an archive deployed to the server.

1 Create a MATLAB Production Server instance

6-10

Manage Application State in Deployed Archives

Create a server from the system command line using mps - new. For more information, see
“Create Server Instance Using Command Line”. If you have not already set up your server
environment, see mps - setup for more information.

Create a new server server 1 located in the folder tmp.
mps-new /tmp/server 1

Alternatively, use the MATLAB Production Server dashboard to create a server. For more
information, see “Set Up and Log In to MATLAB Production Server Dashboard”.

Create a persistence service connection

The deployable archive requires a persistence service connection named ScratchPad. Use the
dashboard to create the ScratchPad connection or copy the file mps cache config from the
example directory to the config directory of your server instance. If you already have an
mps_cache config file in your config directory, edit it to add the ScratchPad connection as
specified in the example mps _cache config.

Create a deployable archive with the Production Server Compiler App and deploy it to the server
1 Open Production Server Compiler app

* MATLAB toolstrip: On the Apps tab, under Application Deployment, click Production
Server Compiler.

* MATLAB command prompt: Enter productionServerCompiler.

In the Application Type menu, select Deployable Archive.

In the Exported Functions field, add findRoute.m, listDestinations.mand
addDestination.m.

Under Archive information, rename the archive to TravelingSalesman.

Under Additional files required for your archive to run, add Distances.xlsx.
Click Package.

The generated deployable archive TravelingSalesman.ctf is located in the

for redistribution folder of the project. Copy the TravelingSalesman. ctf file to the
auto deploy folder of the server, /tmp/server 1/auto deploy in this example, for
hosting.

WN

NOoO U A~

Start the server instance
Start the server from the system command line using mps-start.
mps-start -C /tmp/server_ 1

Alternatively, use the dashboard to start the server.
Start the persistence service

Start the persistence service from the system command line using mps-cache.
mps-cache start -C /tmp/server 1 --connection ScratchPad

Alternatively, use the dashboard to start and attach the persistence service.
Test the app

Start the TravelingSalesman route-finding app that uses the persistence service.

>> TravelingSalesman

6-11

6 Persistence

The app starts with empty values for Host and Port. Refer to the server configuration file
main config located at server name/config to get the host and port values for your
MATLAB Production Server instance. For this example, find the config file at /tmp/server 1/
config. Enter the host and port values in the app.

Click Load Cities to load the list of cities. Use the Start menu to set a starting location and the
>> and << buttons to select and deselect cities to visit. Click Compute Path to display a route
that visits all the cities.

4\ Traveling Salesman — O b

Host | localhost Port 9910

Find Route Add City

Amherst v

Available Destinations Selected Destinations

Boston Gloucester
Brockion . Provincetown
Dedham Wilbraham
Dover Winchendon
Lowell
MNewton
Springfield Compute Path

Load Cities
Distance 319 Miles

Path Amherst, Wilbraham, Winchendon, Gloucester, Provincetown

The results from the testing environment workflow and the deployment environment workflow are the
same.

See Also

mps.cache.Controller | mps.cache.DataCache | mps.sync.TimedMATFileMutex |
mps.sync.TimedRedisMutex | mps.cache.control | mps.cache.connect | mps.sync.mutex

6-12

Manage Application State in Deployed Archives

More About

. “Data Caching Basics”

6-13

6 Persistence

Handle Custom Routes and Payloads in HTTP Requests

6-14

Web request handlers for MATLAB Production Server provide flexible client-server communication.

* Client programmers can send custom HTTP headers and payloads in RESTful requests to the
server.

* Server administrators can provide flexible mapping of the request URLs to deployed MATLAB
functions.

» Server administrators can provide static file serving.

* MATLAB programmers can return custom HTTP headers, HTTP status codes, HTTP status
messages, and payloads in functions deployed to MATLAB Production Server.

To use web request handlers, you write the MATLAB function that you deploy to the server in a
specific way and specify custom URL routes in a JSON file on the server.

Write MATLAB Function for Web Request Handler

To work as a web request handler, the MATLAB function that you deploy to the server must accept
one input argument that is a scalar structure array, and return one output argument that is a scalar
structure array.

The structure in the function input argument provides information about the client request. Clients
can send custom HTTP headers and custom payloads. There are no data format restrictions on the
payload that the deployed function can accept. For example, the function can accept raw data in
binary or ASCII formats, CSV data, or JSON data that is not in the schema specified by the MATLAB
Production Server RESTful API. Clients can also use the Transfer-Encoding: chunked header to
send data in chunks. In chunked transfer encoding, though the server receives payload in chunks, the
input structure receives payload data in entirety.

The structure in the function input argument contains the following fields:

Field Name Data Type Dimensions Description

ApiVersion double 1x3 Version of the input
structure schema in the
format <major>
<minor> <fix>

Body uint8 1xN Request payload

Headers cell Nx?2 HTTP request headers

Each element in the cell
array represents a
header. Each element is
a key-value pair, where
the key is of type char
and the value can be of
type char or double.

HttpVersion double 1x2 HTTP version in the
format <major>
<minor>

Handle Custom Routes and Payloads in HTTP Requests

Field Name Data Type Dimensions Description
Method char 1xN HTTP request method
Path char 1xN Path of request URL

Since the deployed MATLAB function can accept custom headers and payloads in RESTful requests,
you can vary the behavior of the MATLAB function depending on the request header data. You can
use the structure in the function output argument to return a response with custom HTTP headers
and payload. Server processing errors, if any, override any custom HTTP headers that you might set.
If a MATLAB error occurs, the server returns an HTTP 500 Internal Server Error response. All
fields in the structure are optional.

The structure in the output argument can contain the following fields:

Field Name Data Type Dimensions Description

ApiVersion double 1x3 Version of the output
structure schema in the
format <major>
<minor> <fix>

Body uint8 1xN Response payload
Headers cell Nx?2 HTTP response headers

Each element in the cell
array represents a
header. Each element is
a key-value pair, where
the key is of type char
and the value can be of
type char or double.

HttpCode double 1x1 HTTP status code
HttpMessage char 1xN HTTP status message

Configure Server for URL Routes

Custom URL routes allow the server to map the path in request URLs to any deployable archive and
MATLAB function deployed on the server.

To specify the mapping of a request URL to a deployed MATLAB function, you use a JSON file present
on the server. The default name of the file is routes. json and its default location is in the

$MPS INSTALL/config directory. You can change the file name and its location by changing the
value of the - - routes-file property in the main config server configuration file. You must
restart the server after making any updates to routes. json.

When the server starts, it tries to read the routes. json file. If the file does not exist or contains
errors, the server does not start, and writes an error message to the main. log file present in the
directory that the log-root property specifies.

The default routes. json contains a version field with a value of 1.0.0, and an empty pathmap
field. version specifies the schema version of the file. You do not need to change its value. To allow
custom routes, edit the file to specify mapping rules in the pathmap array. In the pathmap array, you
can specify multiple objects, where each object corresponds to a URL route.

6-15

6 Persistence

6-16

Following is the schema of routes. json.

{

}

"version": "1.0.0",
"pathmap": [
{
"match": "<regular_expression>",
"webhandler": {
"component": "<name of deployable archive>",
"function": "<name of deployed function>"
}
}I
{
"match": "<regular_expression>",
"webhandler": {
"component": "<name of deployable archive>",
"function": "<name of deployed function>"
}
}

To specify a URL mapping rule, use the match and webhandler fields from the pathmap array.

In the match field, specify a regular expression that uses ECMAScript grammar to match the path

in a request URL.

If the request URL matches multiple regular expressions in the match field, the first match

starting from the beginning of the file is selected.

The regular expression patterns are considered a match if any substring of the request URL is
a match. For example, the pattern a/b matches a/b, /a/b, and /x/a/b/y. However, you can
use the regular expression anchors, ~ and $, to match positions before or after specific

characters. For example, the pattern ~a/b$ only matches a/b.

You can specify regular expressions that match query parameters in the request URL.

However, asynchronous request execution using the MATLAB Production Server RESTful API is
not supported. Request execution is synchronous. For more information about the MATLAB
Production Server RESTful API, see “RESTful API for MATLAB Function Execution”.

In the webhandler field, use the component field to specify the name of the deployable archive
and the function field to specify the name of the deployed function for the request URL to
execute.

End-to-End Setup for Web Request Handler

This example assumes you have a server instance running at the default host and port,
localhost:9910. For information on starting a server, see “Start Server Instance Using Command

Line”.

1

Write a MATLAB function for the web request handler.

The following code shows a MATLAB function that uses an input argument structure request,
whose fields provide information about the request headers and body. The function also
constructs and returns a structure response, whose fields contain a success HTTP code and

status message, custom headers, and a message body.

Handle Custom Routes and Payloads in HTTP Requests

function response = hellowh(request)
disp(request);
disp('request.Headers:"');
disp(request.Headers);
bodyText = char(request.Body);
disp('request.Body:"');
if length(bodyText) > 100
disp(bodyText(1:100));
disp('...");
else
disp(bodyText);
end

response = struct('ApiVersion', [1 0 O], ...

'HttpCode', 200, ...

'HttpMessage', 'OK', ...

'Headers', {{ ...
'Server' 'WebFunctionTest/1'; ...
'X-MyHeader' 'foobar'; ...
'X-Request-Body-Len' sprintf('%sd', length(request.Body)); ...
'Content-Type' 'text/plain'; ...

3
'Body', uint8('hello, world'));

disp(response);

disp('response.Headers:");

disp(response.Headers);
end

2 Package the function into a deployable archive.

The following command compiles the hellowh.m function into a deployable archive,
whdemo. ctf. For other ways to create deployable archives, see “Create Deployable Archive for
MATLAB Production Server” on page 1-2.

mcc -v -U -W 'CTF:whdemo' hellowh.m

3 Deploy the archive, whdemo, to the server. For more information, see “Deploy Archive to MATLAB
Production Server”.

4 Edit the routes. json file on the server to map a client request to the deployed function.
Restart the server instance for the changes to take effect. See mps-restart.

The following file maps any client request that contains MyDemo in the request URL to the
hellowh function in the whdemo archive deployed to the server.

{
"version": "1.0.0",
"pathmap": [
{
"match": "~/MyDemo/.*",
"webhandler": {
"component": "whdemo",
"function": "hellowh"
1
}
1
}

5 Use a client of your choice to invoke the deployed function.

The following command uses cURL to invoke the deployed function from the system command
line.

curl -v http://localhost:9910/MyDemo/this/could/be/any/path?param=YES

You see the following output at the system command line:

6-17

6 Persistence

6-18

Trying ::1...
TCP_NODELAY set
Connected to localhost (::1) port 9910 (#0)
GET /MyDemo/this/could/be/any/path?param=YES HTTP/1.1
Host: localhost:9910
User-Agent: curl/7.55.1
Accept: */*

HTTP/1.1 200 OK

Server: WebFunctionTest/1
X-MyHeader: foobar
X-Request-Body-Len: 0
Content-Type: text/plain
Content-Length: 12
Connection: Keep-Alive

ello, world* Connection #0 to host localhost left intact

See Also

fi

les-root

Related Examples

“Test Web Request Handlers” (MATLAB Compiler SDK)
“Create Deployable Archive for MATLAB Production Server” on page 1-2
“Deploy Archive to MATLAB Production Server”

Persistence Functions

7 Persistence Functions

7-2

mps.cache.DataCache

Represent cache concept in MATLAB code

Description

mps.cache.DataCache represents the concept of cache in MATLAB code. It is an abstract class that
serves as a superclass for each persistence provider-specific data cache class.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Creation

Create a persistence provider-specific subclass of mps.cache.DataCache using
mps.cache.connect.

Properties

See provider-specific subclasses for properties.

Object Functions

mps.cache.connect

Connect to cache, or create a cache if it doesn't exist

bytes Return the number of bytes of storage used by value stored at each key
clear Remove all keys and values from cache

flush Write all locally modified keys to the persistence service

get Fetch values of keys from cache

getp Get the value of a public cache property

isKey Determine if the cache contains specified keys

keys Get all keys from cache

length Number of key-value pairs in the data cache

purge Flush all local data to the persistence service

put Write key-value pairs to cache

remove Remove keys from cache

retain Store remote keys from cache locally or return locally stored keys
Examples

Connect to a Redis Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);

start(ctrl)

c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection')

mps.cache.DataCache

C =

RedisCache with properties:

Host:

Port:

Name:
Operations:
LocalKeys:
Connection:

Use getp instead of dot notation to access properties.

‘localhost’

4519

'myCache’

"read | write | create | update"
{}

'myRedisConnection’

Version History
Introduced in R2018b

See Also

mps.cache.Controller

Topics

“Data Caching Basics” on page 6-2

7 Persistence Functions

mps.cache.Controller

Manage the life cycle of a persistence service in a MATLAB testing environment

Description

mps.cache.Controller is used to manage the life cycle of a persistence service in a MATLAB
testing environment. You can perform various actions such as starting and stopping the service using
the object.

Creation

Create a mps.cache.Controller object using mps.cache.control.

Properties

ActiveConnection — Connection indicator
True | False

This property is read-only.

Indicates whether the connection to the persistence provider is active or not. The value is True when
the persistence service is attached to the MATLAB session, otherwise it is False.

Example: ActiveConnection: False

ManageService — Service management indicator
True | False | Unknown

This property is read-only.

Indicates whether the controller object is managing the persistence service or not. ManageService
is True if the persistence service is started using the controller's startstart method and False if
the MATLAB session is attached to the persistence service using the controller's attach method. In
all other cases, the value is set to Unknown.

If ManageService is True, destroying the controller object via delete or exiting MATLAB will stop
the persistence service.

Example: ManageService: True

Host — Host name
character vector

This property is read-only.
Name of the system hosting the persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.

mps.cache.Controller

Example: Host: 'localhost!

Port — Port number
positive scalar

This property is read-only.
Port number for persistence service.

This property is not displayed when you create a controller that uses MATLAB as a persistence
provider.

Example: Port: 4519

ProviderName — Name of persistence provider
'Redis' | 'MatlabTest'

This property is read-only.
Name of the persistence provider.
Currently, Redis is the only supported persistence provider.

You can also use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, the provider name is displayed as 'MatlabTest'.

Example: ProviderName: 'Redis’

Example: ProviderName: 'MatlabTest'

ConnectionName — Name of connection
character vector | string

This property is read-only.

Name of connection to persistence service.

Example: ConnectionName: 'myRedisConnection'

Folder* — Storage folder path
character vector

This property is read-only.
Storage folder path. The folder displayed is used as a database.

* This property is displayed only when you create a controller that uses MATLAB as a persistence
provider.

Example: Folder: 'c:\tmp'

Object Functions
mps.cache.control Create a persistence service controller object

start Start a persistence service and attach it to a MATLAB session
stop Stop a persistence service and detach it from a MATLAB session
restart Restart a persistence service and attach it to a MATLAB session

7-5

7 Persistence Functions

attach Connect MATLAB session to persistence service that is already running
detach Disconnect MATLAB session from persistence service that is already running
ping Test whether the persistence service is reachable

version Version number for persistence provider

Examples

Create a Redis Service Controller

ctrl

ctrl =

mps.cache.control('myRedisConnection', 'Redis', 'Port',4519)

Controller with properties:

ActiveConnection:
ManageService:
Host:

Port:

Operations:
ProviderName:
ConnectionName:

False

Unknown

‘localhost’

4519

"read | write | create | update"
'Redis’

'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection', 'MatlabTest', 'Folder', 'c:\tmp")

mctrl

Controller with properties:

ActiveConnection:
ManageService:
Folder:
Operations:
ProviderName:
ConnectionName:

False

Unknown

‘c:\tmp'

"read | write | create | update"
'MatlabTest'
'myMATFileConnection'

Version History

Introduced in R2018b

See Also

mps.cache.DataCache

Topics

“Data Caching Basics” on page 6-2

mps.cache.connect

mps.cache.connect

Connect to cache, or create a cache if it doesn't exist

Syntax

C
C

mps.cache.connect (cacheName)
mps.cache.connect(cacheName, 'Connection',connectionName)

Description

Cc = mps.cache.connect(cacheName) connects to a cache when there's a single connection to a
persistence service.

¢ = mps.cache.connect(cacheName, 'Connection', connectionName) connects to a cache
using the connection specified by connectionName when there are multiple connections to a
persistence service.

Examples

Create a Cache When There is a Single Connection to a Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

When you have a single connection, you do not need to specify the connection name to
mps.cache.connect.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519)
start(ctrl)
Cc = mps.cache.connect('myCache');

C =
RedisCache with properties:

Host: 'localhost'
Port: 4519
Name: 'myCache'
Operations: "read | write | create | update”
LocalKeys: {}
Connection: 'myRedisConnection’

Use getp instead of dot notation to access properties.

Create a Cache When There are Multiple Connections to a Persistence Service

When you have multiple connections to a persistence service, create a cache by specifying the
connection name associated with the service you want to use.

7-7

7 Persistence Functions

ctrl 1 = mps.cache.control('myRedisConnectionl', 'Redis"', 'Port"',4519)
start(ctrl 1)

ctrl 2 = mps.cache.control('myRedisConnection2', 'Redis', 'Port"',4520)
start(ctrl_2)

c = mps.cache.connect('myCache', 'Connection', "'myRedisConnectionl")

C =
RedisCache with properties:
Host: 'localhost'’
Port: 4519
Name: 'myCache'’
Operations: "read | write | create | update”
LocalKeys: {}
Connection: 'myRedisConnectionl'’

Use getp instead of dot notation to access properties.

Input Arguments

cacheName — Cache name to connect to or create
character vector

Cache name to connect to or create, specified as a character vector.

Example: 'myCache’

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.

Example: 'Connection', 'myRedisConnection'’

Output Arguments

¢ — Data cache object
persistence provider-specific data cache object

A persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Version History
Introduced in R2018b

See Also
mps.cache.DataCache

mps.cache.control

mps.cache.control

Create a persistence service controller object

Syntax

ctril
ctril

mps.cache.control(connectionName,Provider, 'Port',num)
mps.cache.control(connectionName,Provider, 'Folder', folderPath)

Description

ctrl = mps.cache.control(connectionName,Provider, 'Port', num) creates a persistence
service controller object using a connection to a persistence service specified by connectionName, a
persistence provider specified by Provider, and a port number num for the service.

You cannot compile and deploy this function on the server. This function is available only for testing.

ctrl = mps.cache.control(connectionName,Provider, 'Folder', folderPath) creates a
persistence service controller object that uses a folder specified by folderPath as a database.

Use this syntax when you want to use MATLAB as a persistence provider for testing purposes.

You cannot compile and deploy this function on the server. This function is available only for testing.

Examples

Create a Redis Service Controller

ctrl

mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519)

ctrl =
Controller with properties:

ActiveConnection: False
ManageService: Unknown
Host: 'localhost'
Port: 4519
Operations: "read | write | create | update"
ProviderName: 'Redis'
ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller

mctrl = mps.cache.control('myMATFileConnection', 'MatlabTest', 'Folder', 'c:\tmp"')

mctrl
Controller with properties:
ActiveConnection: False

ManageService: Unknown
Folder: 'c:\tmp'

7 Persistence Functions

7-10

Operations: "read | write | create | update"
ProviderName: 'MatlabTest'
ConnectionName: 'myMATFileConnection'

Input Arguments

connectionName — Name of the connection
character vector | string

Name of the connection to the persistence service, specified as a character vector.

The connectionName links a MATLAB session to a persistence service.

Example: 'myRedisConnection’

Provider — Name of the persistence provider
'Redis' | 'MatlabTest'

Name of the persistence provider, specified as a character vector.

You can use MATLAB as a persistence provider for testing purposes. If you use MATLAB as a
persistence provider, specify the provider name as 'MatlabTest'.

Example: 'Redis’
Example: 'MatlabTest'

num — Port number
positive scalar

Port number for the persistence service.
Example: 'Port', 4519

folderPath — Storage folder path
character vector

Storage folder path, specified as a character vector.

Specify this input only when you want to use MATLAB as a persistence provider for testing purposes.
A folder specified by folderPath serves as a database.

Example: 'Folder', 'c:\tmp'

Output Arguments

ctrl — Persistence provider service controller object
mps.cache.Controller object

Persistence provider service controller returned as a mps.cache.Controller object.

Version History
Introduced in R2018b

mps.cache.control

See Also
mps.cache.Controller|start|stop| restart

Topics
“Data Caching Basics” on page 6-2

7-11

7 Persistence Functions

7-12

attach

Package: mps.cache

Connect MATLAB session to persistence service that is already running

Syntax

attach(ctrl)

Description

attach(ctrl) connects a MATLAB session to a persistence service that is already running.

Examples

Connect a MATLAB Session to a Persistence Service
Attach MATLAB code to a persistence service.

Start a persistence service outside your MATLAB session from the system command line using mps -
cache or using the dashboard. Assuming your started the service using a connection name
myOutsideRedisConnection at port 8899, attach your MATLAB session to it from the MATLAB
desktop.

ctrl = mps.cache.control('myOutsideRedisConnection', 'Redis', 'Port',8899);
attach(ctrl)

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: attach(ctrl)

Version History
Introduced in R2018b

See Also
detach | start | stop | restart

Topics
“Data Caching Basics” on page 6-2

detach

detach

Package: mps.cache

Disconnect MATLAB session from persistence service that is already running

Syntax

detach(ctrl)

Description

detach(ctrl) disconnects MATLAB session from a persistence service that is already running.

Examples

Disconnect MATLAB Code
Disconnect MATLAB code from a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can connect MATLAB code to it. You can
then disconnect the code from the service.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port"',4519);
start(ctrl)

attach(ctrl)
detach(ctrl)

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: detach(ctrl)

Version History
Introduced in R2018b

See Also
attach|start|stop| restart

Topics
“Data Caching Basics” on page 6-2

7-13

7 Persistence Functions

7-14

start

Start a persistence service and attach it to a MATLAB session

Syntax

start(ctrl)

Description

start(ctrl) starts a persistence service represented by ctrl and attaches it to a current MATLAB
session.

+ To make a persistence service available in a MATLAB session, the service must be started and
then attached to the MATLAB session. start performs both these actions.

+ If a persistence service has already been started, there is no need to call start. Use attach
instead.

+ start and stop, attach and detach must be used in pairs.

+ Ifyou connected a persistence service to your MATLAB session with start, you must disconnect
with stop.

» If you connected with attach, you must disconnect with detach.

Examples
Start a Persistence Service
Start a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: start(ctrl)

Version History
Introduced in R2018b

See Also
stop | restart | attach | detach

start

Topics
“Data Caching Basics” on page 6-2

7-15

7 Persistence Functions

7-16

stop

Stop a persistence service and detach it from a MATLAB session

Syntax

stop(ctrl)

Description

stop(ctrl) stops a persistence service represented by ctrl and detaches it from a current
MATLAB session.

* You cannot stop a service that has not been started.
* You can only stop a service that has been started using start.

» Exiting MATLAB will automatically call stop on all persistence services that were started using
start.

Examples

Stop a Persistence Service
Stop a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then stop it.

ctrl mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);

start(ctrl)
stop(ctrl)

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: stop(ctrl)

Version History
Introduced in R2018b

See Also
start | restart | attach | detach

stop

Topics
“Data Caching Basics” on page 6-2

7-17

7 Persistence Functions

7-18

restart

Restart a persistence service and attach it to a MATLAB session

Syntax

restart(ctrl)

Description

restart(ctrl) restarts a persistence service represented by ctrl. You only restart a services you
originally started using start.

Examples

Restart a Persistence Provider
Restart a persistence service.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can then restart it.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);

start(ctrl)
restart(ctrl)

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: restart(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | attach | detach

Topics
“Data Caching Basics” on page 6-2

ping

ping

Test whether the persistence service is reachable

Syntax
ping(ctrl)

Description

ping(ctrl) tests whether the persistence service is reachable. In order to ping a persistence
service, it must be started and attached to yourMATLAB session.

Examples

Ping Persistence Service
Test whether the persistence service is reachable.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can ping the service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)
ping(ctrl)

Sending ping to Redis on localhost:4519.
Redis service running on localhost:4519.

ans =
logical

1

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: ping(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | restart

7-19

7 Persistence Functions

Topics
“Data Caching Basics” on page 6-2

7-20

version

version

Version number for persistence provider

Syntax

version(ctrl)

Description
version(ctrl) returns the version number for the persistence provider. In order to get the version

number of the persistence provider, the persistence service must be started and attached to
yourMATLAB session.

Examples

Get Version Number
Get the version number of the persistence provider that the persistence service is connected to.

First, create a persistence service controller object and use that object to start the persistence
service. Once you have a persistence service running, you can get the version number.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)
version(ctrl)

Redis version: 3.0.504

Input Arguments

ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

Example: version(ctrl)

Version History
Introduced in R2018b

See Also
start | stop | restart

Topics
“Data Caching Basics” on page 6-2

7-21

7 Persistence Functions

7-22

bytes

Return the number of bytes of storage used by value stored at each key

Syntax
b = bytes(c,keys)

Description

b = bytes(c, keys) returns the number of bytes of storage used by value stored at each key.

Examples

Get the Number of Bytes of Storage Used by a Value in the Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and then get the number of bytes of storage used by a value stored
at each key in the cache. Represent the keys and the bytes used by each value of key as a MATLAB
table.

put (c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))
b = bytes(c,{'keyOne', 'keyTwo', 'keyThree', 'keyFour', 'keyFive'})
tt = table(keys(c), bytes(c,keys(c))','VariableNames',{'Keys', 'Bytes'})

b:

72 72 72 80 264

tt =
5x2 table

Keys Bytes
'keyFive' 264
"keyFour' 80
"keyOne' 72
'keyThree' 72
'keyTwo' 72

Input Arguments

c — Data cache
persistence provider specific data cache object

bytes

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

keys — Keys
cell array of character vectors

A list of all the keys, specified as a cell array of character vectors.

Example: {'keyOne', 'keyTwo', 'keyThree', 'keyFour', 'keyFive'}

Output Arguments

b — Number of bytes
numeric row vector

Number of bytes used by each value associated with a key, returned as a numeric row vector.

The byte counts in the output vector appear in the same order as the corresponding input keys. b (1)
is the byte count for keys (1i).

Version History
Introduced in R2018b

See Also
length | get | keys | put

Topics
“Data Caching Basics” on page 6-2

7-23

7 Persistence Functions

7-24

clear

Remove all keys and values from cache

Syntax

n = clear(c)

Description

n = clear(c) removes all keys and values from cache and returns the number of keys cleared from
the cache in n.

clear removes both local and remote keys and values.

Examples

Clear All Keys and Values from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port"',4519);

start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})
tt =
5x2 table
Keys Values
'keyFive' [5x5 double]
"keyFour' [1x2 double]
'keyOne' [10]
"keyThree' [30]
"keyTwo' [20]

Clear the cache and check if it is empty.

n = clear(c)
k = keys(c)
n =

int64

clear

k =

0x1 empty cell array

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

Output Arguments

n — Number of key-value pairs
integer

Number of key-value pairs removed, returned as an integer.

Example: 5

Version History
Introduced in R2018b

See Also
put | flush | keys | purge | remove | retain

Topics
“Data Caching Basics” on page 6-2

7-25

7 Persistence Functions

7-26

flush

Write all locally modified keys to the persistence service

Syntax

modKeys = flush(c)

Description

modKeys = flush(c) writes all locally modified data in c to the persistence service and returns a
list of keys that have been modified.

flush does not clear the list of retained keys.

Examples

Write All Locally Modified Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);

start(ctrl)
¢ = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

tt = table(keys(c), get(c,keys(c))', 'VariableNames"',{'Keys"', 'Values'})
tt =
5x2 table
Keys Values
'keyFive' [5x5 double]
"keyFour' [1x2 double]
'keyOne' [10]
"keyThree' [30]
"keyTwo' [20]

Retain a single key locally and verify that it shows up as a local key in the cache object.

retain(c, 'keyOne')
display(c)

flush

RedisCache with properties:

Host: 'localhost’
Port: 4519
Name: 'myCache'’
Operations: "read | write | create | update”
LocalKeys: {'keyOne'}
Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Modify the local key and flush it to the remote cache. Display the keys and values in the cache as a
MATLARB table.

put(c, 'keyOne',rand(3))
modKeys = flush(c)
tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})

modKeys =

1x1 cell array

{'keyOne'}
tt =
5x2 table
Keys Values
'keyFive' [5x5 double]
"keyFour' [1x2 double]
"keyOne' [3x3 double]
'keyThree' [301
'keyTwo' [20]

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

Output Arguments

modKeys — Modified keys
cell array of character vectors

A list of the modified keys that were written to the persistence service, returned as a cell array of
character vectors.

7-27

7 Persistence Functions

7-28

Version History
Introduced in R2018b

See Also
retain | purge | clear | keys | remove

Topics
“Data Caching Basics” on page 6-2

get

get

Fetch values of keys from cache

Syntax

values = get(c,keys)

Description

values = get(c, keys) fetches values of keys specified by keys from the cache specified by c.
Values are returned in the same order as input variables as a cell array.

Examples

Get Values for Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour', [400 5001, 'keyFive',magic(5))

Get all the keys and associated values and display them as a MATLAB table.

k = keys(c)
v = gz¥fc?{'key0ne','keyTwo‘,'keyThree','keyFour','keyFive'})
tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})
k:
5x1 cell array
{'keyFive' }
{'keyFour"' }
{'keyOne' }
{'keyThree'}
{'keyTwo' }
VvV =
1x5 cell array
{[10]1} {[20]1} {[30]1} {1x2 double} {5x5 double}
tt =

7-29

7 Persistence Functions

5x2 table

Keys Values

'keyFive' [5x5 double]

"keyFour' [1x2 double]

'keyOne' [10]

'keyThree' [30]

'keyTwo' [20]
Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

keys — Keys
cell array of character vectors

A cell array of keys whose values you want to retrieve from cache.

Example: {'keyOne', 'keyTwo', 'keyThree', 'keyFour', 'keyFive'}

Output Arguments

values — Values
cell array

A list of values associated with keys, returned as a cell array.

Version History
Introduced in R2018b

See Also
getp | keys | length | put

Topics
“Data Caching Basics” on page 6-2

7-30

getp

getp

Get the value of a public cache property

Syntax

value = getp(c,property)

Description
value = getp(c,property) gets the value of a public cache property.

Ordinarily, you would be able to access the public properties of a cache object using the dot notation.
For example: c.Connection. However, all cache objects use dot reference and dot assignment to
refer to keys stored in the cache rather than cache object properties. Therefore, c.Connection
refers to a key named Connection in the cache instead of the cache's Connection property.

There is no setp method since all cache properties are read-only.

Examples

Get the Value of a Named, Public, Hidden Property

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)
¢ = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retrieve the connection name.
getp(c, 'Connection")
ans =

"'myRedisConnection’

Input Arguments

¢ — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

7-31

7 Persistence Functions

property — Property name
character vector

Property name, specified as a character vector. The common public cache properties are Name,
LocalKeys, and Connection. Provider-specific cache objects may have additional properties. For
example, mps.cache.RedisCache has the properties Host and Port.

Example: 'Connection’

Output Arguments

value — Property value
valid value

A valid property value.

Version History
Introduced in R2018b

See Also
get | keys | put

Topics
“Data Caching Basics” on page 6-2

7-32

isKey

isKey

Determine if the cache contains specified keys

Syntax

TF = isKey(c,keys)

Description

TF = isKey(c,keys) returns a logical 1 (true) if c contains the specified key, and returns a
logical @ (false) otherwise.

If keys is an array that specifies multiple keys, then TF is a logical array of the same size, and TF{i}
is true if keys{i} exists in cache c.

Examples

Determine if the Cache Contains Specified Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port"',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

Determine if the cache contains specified keys.

TF isKey(c,{'keyOne', 'keyTW0OO', 'keyTREE"', 'key4', 'keyFive'})
TF =
1x5 logical array

1 0 0 O 1

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example:

7-33

7 Persistence Functions

7-34

keys — Keys to search for
character vector | string | cell array of character vectors or strings

Keys to search for in the cache object c, specified as a character vector, string, or cell array of
character vectors or strings. To search for multiple keys, specify keys as a cell array.

Example: {'keyOne', 'keyTW00', 'keyTREE', 'key4', 'keyFive'}

Output Arguments

TF — Logical value
logical array

A logical array of the same size as keys indicating which specified keys were found in the data cache.
TF has a logical 1 (true) if c contains a key specified by keys, and a logical @ (false) otherwise.

Version History
Introduced in R2018b

See Also
keys | get | length | put

Topics
“Data Caching Basics” on page 6-2

keys

keys

Get all keys from cache

Syntax

k = keys(c)

Description

k = keys(c) returns a list of all the keys in a data cache as a cell array.

Examples

Get Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);

start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

Get all keys.
k = keys(c)
k —

5x1 cell array

{'keyFive' }
{'keyFour"' }
{'keyOne' }
{'keyThree'}
{'keyTwo' }

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

7-35

7 Persistence Functions

7-36

Output Arguments

k — Keys
cell array of character vectors

Keys from cache, returned as a cell array of character vectors.

Version History
Introduced in R2018b

See Also
isKey | bytes | get | length | put

Topics
“Data Caching Basics” on page 6-2

length

length

Number of key-value pairs in the data cache

Syntax

num
num

length(c)
length(c, location)

Description
num = length(c) returns the total number of key-value pairs in the data cache c.

num = length(c, location) returns the numbers of key-value pairs in the data cache c stored
remotely or locally as specified by Location.

Examples

Count the Number of Key-Value Pairs

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retain a few keys locally.

retain(c, {'keyOne','keyTwo'})

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))
Count the number of keys-value pairs.
numTotal = length(c)
numRemote = length(c, 'Remote")
numLocal = length(c, 'Local')
numTotal =
int64
5
numRemote =

int64

3

7-37

7 Persistence Functions

7-38

numLocal =
int64
2
Since keyOne and keyTwo were retained before being written to the cache, they were never written
to the persistence service. They are stored locally until flushed or purged to the persistence service.

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

location — Location name
'Remote’ | 'Local’

Location of keys specified as an enumerated member of the class mps.cache.Location. The valid
location options are either 'Remote’' or 'Local’.

Example: 'Remote’

Output Arguments

num — Number of keys
integer

Total number of key-value pairs in the data cache or the number stored remotely or locally, returned
as an integer.

Version History
Introduced in R2018b

See Also
keys | bytes | get | isKey | put

Topics
“Data Caching Basics” on page 6-2

countRemoteKeys

countRemoteKeys

Count the number of keys stored on a remote persistence provider

Syntax

count = countRemoteKeys(c)

Description

count = countRemoteKeys(c) counts the number of keys stored on a remote persistence
provider.

Examples

Count the Number of Keys Stored on a Remote Persistence Provider

count = countRemoteKeys(c)

Input Arguments

¢ — Data cache object
mps .cache.DataCache ohject

Example:

Output Arguments

count —

Version History
Introduced in R2018b

See Also

7-39

7 Persistence Functions

7-40

purge

Flush all local data to the persistence service

Syntax

purgedKeys = purge(c)

Description

purgedKeys = purge(c) flushes all local data to the persistence service and removes it locally.

Examples

Flush All Local Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

Retain a few keys locally. For more information, see retain.

retain(c, {'keyOne','keyTwo'})

Modify the local keys and purge the data. Display the keys and values in the cache as a MATLAB
table.

put(c, 'keyOne',rand(3), 'keyTwo', eye(10))
purgedKeys = purge(c)
tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})
display(c)
purgedKeys =
2x1 cell array
{'keyOne'}
{'keyTwo'}
tt =
5x2 table

Keys Values

purge

'keyFive' [5x5
"keyFour' [1x2
'keyOne' [3x3
'keyThree' [

'keyTwo' [10x10

C =

double
double
double

— e

double

RedisCache with properties:

Host: 'localhost’

Port: 4519
Name: 'myCache'’

Operations: "read | write | create | update”

LocalKeys: {}

Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Input Arguments

c — Data cache

persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache

objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

Output Arguments

purgedKeys — Purged keys
cell array of character vectors

List of keys that were written to the persistence service, returned as a cell array of character vectors.

Version History
Introduced in R2018b

See Also

clear | flush | keys | length | remove | retain

Topics

“Data Caching Basics” on page 6-2

7-41

7 Persistence Functions

7-42

put

Write key-value pairs to cache

Syntax

put(c,keyl,valuel, ..., keyN,valueN)
put(c, keySet,valueSet)

Description

put(c,keyl,valuel, ..., keyN,valueN) writes key-value pairs to cache. You can store any type
of MATLAB data in a cache.

put(c, keySet,valueSet) writes key-value pairs to cache with keys from by keySet, each mapped
to a corresponding value from valueSet. The input arguments keySet and valueSet must have the
same number of elements, with keySet having elements that are unique.

Examples

Write Series of Key-Value Pairs to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})
tt =
5x2 table
Keys Values
"keyFive' [5x5 double]
"keyFour' [1x2 double]
'keyOne' [10]
"keyThree' [30]
"keyTwo' [20]

put

Write Set of Keys and Corresponding Values to Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);

start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a set of keys and corresponding values to the cache and display them as a MATLAB table.

keySet = {'keyOne', 'keyTwo', 'keyThree', 'keyFour', 'keyFive'}

valueSet = {10, 20, 30, [400 500], magic(5)}

put(d, keySet,valueSet)

tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys', 'Values'})

tt =
5x2 table
Keys Values
"keyFive' [5x5 double]
"keyFour' [1x2 double]
"keyOne' [10]
'keyThree' [30]
"keyTwo' [20]

Write Object to Cache

Create a class whose object you want to write to the Redis cache.

classdef BasicClass
properties
Value = pi;
end
methods
function r = roundOff(obj)
r = round([obj.Valuel,b2);
end
function r = multiplyBy(obj,n)
r = [obj.Value] * n;
end
end
end

Create an object of the class and assign a value to the Value property,

a = BasicClass
a.Value = 4

Start a persistence service that uses Redis as the persistence provider. The service requires a

connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

7-43

7 Persistence Functions

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a key and the object that you created to the cache and retrieve the object.

put(c, 'objKey',a)
objval = get(c, 'objKey")

objVval =
BasicClass with properties:

Value: 4

The output shows that there is no loss of information during writing an object to the cache and
retrieving the object from the cache. The retrieved object contains the same information as the input
object.

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

key — Key
character vector

Key to add, specified as a character vector.

Example: 'keyFour'

value — Value
array

Value, specified as an array. value can be any valid MATLAB data type, including MATLAB objects.
Example: [400, 500]

keySet — Keys
cell array of character vectors

Keys, specified as a cell array of character vectors.

Example: {'keyOne', 'keyTwo', 'keyThree', 'keyFour', 'keyFive'}

valueSet — Values
cell array

Values, specified as comma-separated cell array. Each value may be any valid MATLAB data type,
including MATLAB objects.

Example: {10, 20, 30, [400 500], magic(5)}

7-44

put

Version History
Introduced in R2018b

See Also
keys | get | bytes | length | remove | clear

Topics
“Data Caching Basics” on page 6-2

7-45

7 Persistence Functions

7-46

remove

Remove keys from cache

Syntax

num = remove(c,keys)

Description

num = remove(c, keys) removes keys and associated values from cache. There is no way to
recover removed keys.

Examples

Remove Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);

start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

tt = table(keys(c), get(c,keys(c))','VariableNames"',{'Keys"', 'Values'})
tt =
5x2 table
Keys Values
'keyFive' [5x5 double]
"keyFour' [1x2 double]
'keyOne' [10]
'keyThree' [30]
'keyTwo' [20]

Remove two keys from cache c and display the remaining keys and values in the cache as a MATLAB
table.

num = remove(c,{'keyThree', 'keyFour'})
tt = table(keys(c), get(c,keys(c))', 'VariableNames',{'Keys"', 'Values'})

num =

int64

remove

2
tt =
3x2 table
Keys Values
'keyFive' [5x5 double]
'keyOne' [10]
'keyTwo' [20]

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

keys — Keys to remove
cell array of character vectors

Keys to remove from cache, specified as a cell array of character vectors.

Example: {'keyThree', 'keyFour'}

Output Arguments

num — Number of keys removed
integer

Number of keys removed, returned as an integer.

Version History
Introduced in R2018b

See Also
put | keys | get | purge | retain | clear

Topics
“Data Caching Basics” on page 6-2

7-47

7 Persistence Functions

7-48

retain

Store remote keys from cache locally or return locally stored keys

Syntax

retain(c, remoteKeys)
localKeys = retain(c)

Description
retain(c, remoteKeys) stores keys from cache locally.

localKeys = retain(c) returns a cell array of keys stored locally.

Examples

Store Keys from Cache Locally and Check Local Keys

Start a persistence service that uses Redis as the persistence provider. The service requires a
connection name and an open port. Once the service is running, you can connect to the service using
the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection', 'Redis"', 'Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.

put(c, 'keyOne',10, 'keyTwo',20, 'keyThree',30, 'keyFour',[400 500], 'keyFive',magic(5))

Retain a few keys locally and check local keys.

retain(c,{'keyThree', 'keyFour'})
localKeys = retain(c)

localKeys =
1x2 cell array

{'keyThree'} {'keyFour'}

Input Arguments

c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore, the cache
objects will be of type mps.cache.RedisCache or mps.cache.MATFileCache.

Example: ¢

retain

remoteKeys — Keys
cell array of character vectors

Remote keys to store locally, specified as a cell array of character vectors.

Example: {'keyThree', 'keyFour'}

Output Arguments

localKeys — Keys
cell array of character vectors

Locally stored keys, returned as a cell array of character vectors.

Tips

* As a performance optimization you may choose to temporarily store a set of keys and their values
in your MATLAB session or worker instead of the persistence service. Keys retained in the this
fashion will be automatically written to the persistence service (see flush) when MATLAB exits or
when the first function call returns.

* Manually control the lifetime of retained keys with the flush and purge methods.

Version History
Introduced in R2018b

See Also
flush | purge | remove | clear

Topics
“Data Caching Basics” on page 6-2

7-49

7 Persistence Functions

7-50

mps.sync.mutex

Create a persistence service mutex

Syntax

1k = mps.sync.mutex(mutexName, 'Connection', connectionName,Name,Value)

Description

1k = mps.sync.mutex(mutexName, 'Connection', connectionName,Name,Value) creates a
database advisory lock object.

Examples

Create a Redis Mutex

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

1k

mps.sync.mutex('myMutex', 'Connection', 'myRedisConnection')
k =

TimedRedisMutex with properties:
Expiration: 10

ConnectionName: 'myRedisConnection'
MutexName: 'myMutex’

Input Arguments

mutexName — Mutex name
character vector

Name of persistence service mutex, specified as a character vector.

Example: 'myMutex’

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.

Example: 'Connection', 'myRedisConnection’

mps.sync.mutex

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Expiration', 10

Expiration — Time in seconds
positive integer

Expiration time in seconds after the lock is acquired.

Other clients will be able to acquire the lock even if you do not release it.

Example: 'Expiration', 10

Output Arguments

1k — Mutex object
persistence service mutex object

A persistence service mutex object. If you use Redis as your persistence provider, Lk will be a
mps.sync.TimedRedisMutex object. If you use MATLAB as your persistence provider, 1k will be a
mps.sync.TimedMATFileMutex object.

Tips

» A persistence service mutex allows multiple clients to take turns using a shared resource. Each
cooperating client creates a mutex object with the same name using a connection to a shared
persistence service. To gain exclusive access to the shared resource, a client attempts to acquire a
lock on the mutex. When the client finishes operating on the shared resource, it releases the lock.
To prevent lockouts should the locking client crash, all locks expire after a certain amount of time.

* Acquiring a lock on a mutex prevents other clients from acquiring a lock on that mutex but it does
not lock the persistence service or any keys or values stored in the persistence service. These
locks are advisory only and are meant to be used by cooperating clients intent of preventing data
corruption. Rogue clients will be able to corrupt or delete data if they do not voluntarily respect
the mutex locks.

Version History
Introduced in R2018b

See Also
acquire | own | release | mps.sync.TimedRedisMutex | mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” on page 6-2

7-51

7 Persistence Functions

mps.sync.TimedRedisMutex

Represent a Redis persistence service mutex

Description

mps.sync.TimedRedisMutex is a synchronization primitive used to protect data in a Redis
persistence service from being simultaneously accessed by multiple workers.

Creation

Create a mps.sync.TimedRedisMutex object using mps.sync.mutex.

Properties

Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.

Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.

Example: 'myRedisConnection’

MutexName — Name of mutex
character vector

This property is read-only.

Name of mutex, returned as a character vector.

Example: 'myMutex’

Object Functions
mps.sync.mutex Create a persistence service mutex

acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

7-52

mps.sync.TimedRedisMutex

Examples

Create a Redis Lock Object

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)
1k = mps.sync.mutex('myMutex', 'Connection', 'myRedisConnection')

k =
TimedRedisMutex with properties:
Expiration: 10

ConnectionName: 'myRedisConnection'
MutexName: 'myMutex’

Version History
Introduced in R2018b

See Also
mps.sync.mutex | mps.sync.TimedMATFileMutex | acquire | own | release

Topics
“Data Caching Basics” on page 6-2

7-53

7 Persistence Functions

mps.sync.TimedMATFileMutex

Represent a MAT-file persistence service mutex

Description

mps.sync.TimedMATFileMutex is synchronization primitive used to protect data in a MAT-file
database from being simultaneously accessed by multiple workers.

Creation

Create a mps.sync.TimedMATFileMutex object using mps.sync.mutex.

Properties

Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.

Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.

Example: 'myRedisConnection’

MutexName — Name of lock
character vector

This property is read-only.

Name of advisory lock, specified as a character vector.

Example: 'myMutex’

Object Functions
mps.sync.mutex Create a persistence service mutex

acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex object
release Release advisory lock on persistence service mutex

7-54

mps.sync.TimedMATFileMutex

Examples

Create a MAT-File Lock Object

mctrl = mps.cache.control('myMATFileConnection', 'MatlabTest', 'Folder', 'c:\tmp")
start(mctrl)
1k = mps.sync.mutex('myMATFileMutex', 'Connection', 'myMATFileConnection')

1k =
TimedMATFileMutex with properties:
Expiration: 10

ConnectionName: 'myMATFileConnection'
MutexName: 'myMATFileMutex'

Version History
Introduced in R2018b

See Also
mps.sync.mutex | mps.sync.TimedRedisMutex | acquire | own | own | release | release

Topics
“Data Caching Basics” on page 6-2

7-35

7 Persistence Functions

acquire

Acquire advisory lock on persistence service mutex

Syntax

TF = acquire(lk,timeout)

Description

TF = acquire(lk,timeout) acquires an advisory lock and returns a logical 1 (true) if the lock
was successful, and a logical @ (false) otherwise. If the lock is unavailable, acquire will continue
trying to acquire it for timeout seconds.

Examples

Apply Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port"',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

1k = mps.sync.lock('myDbLock', 'Connection', 'myRedisConnection')
Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.
acquire(lk, 20);
TF =
logical

1

Input Arguments

1k — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, 1k will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, 1k will be
amps.sync.TimedMATFileMutex object.

timeout — Retry duration
positive integer

Duration after which to retry acquiring lock.

7-56

acquire

Example: 20

Output Arguments

TF — Logical value
logical array

TF has a logical 1 (true) if acquiring the advisory lock was successful, and a logical @ (false)
otherwise.

Version History
Introduced in R2018b

See Also
mps.sync.mutex | own | release | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” on page 6-2

7-57

7 Persistence Functions

7-58

own

Check ownership of advisory lock on a persistence service mutex object

Syntax

TF = own(lk)

Description
TF = own(lk) returns alogical 1 (true) if you own an advisory lock on the persistence service

mutex, and returns a logical 0 (false) otherwise.

Examples

Check If You Own the Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.
1k = mps.sync.lock('myDbLock', 'Connection', 'myRedisConnection")

Check if you own the advisory lock.
TF

own (k)
TF =
logical

0

Input Arguments

1k — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, 1k will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, Lk will be
amps.sync.TimedMATFileMutex object.

Output Arguments

TF — Logical value
logical array

own

TF has a logical 1 (true) if you own the advisory lock on the persistence service mutex, and a
logical @ (false) otherwise.

Version History
Introduced in R2018b

See Also

mps.sync.mutex | acquire | release | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” on page 6-2

7-59

7 Persistence Functions

release

Release advisory lock on persistence service mutex

Syntax

TF = release(1lk)

Description

TF = release(lk) releases an advisory lock on a persistence service mutex. If the lock expires
before you release it, release returns a logical @ (false). If this occurs, it may indicate potential
data corruption.

Examples

Release Advisory Lock

First, create a persistence service controller object and use that object to start the persistence
service.

ctrl = mps.cache.control('myRedisConnection', 'Redis', 'Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

1k = mps.sync.lock('myDbLock', 'Connection', 'myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.
acquire(lk, 20);

Release lock.

TF

release(1k)
TF =
logical

1

Input Arguments

1k — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider, 1k will be a
mps.sync.TimedRedisMutex object. If you use a MATLAB as your persistence provider, 1k will be
amps.sync.TimedMATFileMutex object.

7-60

release

Output Arguments

TF — Logical value
logical array

TF has a logical 1 (true) if releasing the advisory lock was successful, and a logical @ (false)
otherwise.

Version History
Introduced in R2018b

See Also
mps.sync.mutex | acquire | own | mps.sync.TimedRedisMutex |
mps.sync.TimedMATFileMutex

Topics
“Data Caching Basics” on page 6-2

7-61

MATLAB Client

* “Connect MATLAB Session to MATLAB Production Server” on page 8-2
* “Execute Deployed MATLAB Functions” on page 8-5

* “Configure Client-Server Communication” on page 8-11

* “Application Access Control” on page 8-14

» “Execute Deployed Functions Using HTTPS” on page 8-17

* “Manage Add-Ons” on page 8-20

* “Deploy Add-Ons” on page 8-25

8 MATLAB Client

Connect MATLAB Session to MATLAB Production Server

8-2

MATLAB Client for MATLAB Production Server makes the functions deployed on on-premises
MATLAB Production Server instances available in your MATLAB session.

When to Use MATLAB Client for MATLAB Production Server
MATLAB Client for MATLAB Production Server enables you to do the following:

* Scale with demand: Shift computationally intensive work from MATLAB desktop to server-class
machines or scalable infrastructure.

* Centralize algorithm management: Install MATLAB functions that contain your algorithms on a
central server and then run them from any MATLAB desktop, ensuring consistent usage and
making upgrades easier.

* Protect intellectual property: Protect algorithms deployed to the server using encryption.

Using MATLAB Client for MATLAB Production Server is less suitable for algorithms that have the
following characteristics:

* The algorithms are called several times from inside a loop.

* The algorithms require resources such as files or hardware that are available only on a single
machine or to a single person.

* The algorithms rely on the MATLAB desktop or MATLAB graphics, or use data from a MATLAB
session.

Install MATLAB Client for MATLAB Production Server

Install the MATLAB Client for MATLAB Production Server support package from the MATLAB Add-On
Explorer. For information about installing add-ons, see “Get and Manage Add-Ons” (MATLAB).

After your installation is complete, find examples in support package root\toolbox\mps
\matlabclient\demo, where support package root is the root folder of support packages on
your system. Access the documentation by entering the doc command at the MATLAB command
prompt or by clicking the Help button. In the Help browser that opens, navigate to MATLAB Client for
MATLAB Production Server under Supplemental Software.

Connect MATLAB Session to MATLAB Production Server

MATLAB Client for MATLAB Production Server uses MATLAB add-ons to connect a MATLAB session
to MATLAB functions deployed on server instances. The connection between a server instance and a
MATLAB desktop session consists of two parts:

1 A MATLAB Production Server deployable archive that publishes one or more functions.
2 A MATLAB add-on that makes those functions available in MATLAB.

You must include a MATLAB function signature file when you create the deployable archive. For more
information, see “MATLAB Function Signatures in JSON”. The server instance that hosts the
deployable archive must have the discovery service enabled. For more information, see “Discovery
Service”.

Connect MATLAB Session to MATLAB Production Server

You must install a MATLAB Production Server add-on to connect a MATLAB desktop session to an
archive deployed on a server instance. For example, for an archive mathfun deployed to a server
instance running on myhost.mycompany. com at port 31415, you can install the corresponding add-
on with a single command:

>> prodserver.addon.install('mathfun', 'myhost.mycompany.com',31415);

Then, you can call the functions in that archive from the MATLAB desktop, script, and function files.
For example, if the deployed archive contains a function mymagic that takes an integer input and
returns a magic square, you can call mymagic from the MATLAB command prompt.

>> mymagic(3)

For a detailed example, see “Execute Deployed MATLAB Functions” on page 8-5.

System Requirements

MATLAB Client for MATLAB Production Server has the same system requirements as MATLAB. For
more information, see System Requirements for MATLAB.

Synchronous Function Execution

MATLAB programs are synchronous. Given a sequence of MATLAB function calls, MATLAB waits for
each function to complete before calling the next one. Therefore, the MATLAB Production Server add-
on functions are also synchronous. The add-ons use the MATLAB Production Server RESTful API for
synchronous function execution. For more information about the RESTful API, see “Synchronous
Execution”.

Supported Data Types

MATLAB Client for MATLAB Production Server supports all data types that the MATLAB Production
Server RESTful API supports, which are as follows:

* Numeric types: double, single, all integer types, complex numbers, NaN, Inf and -Inf.

* Character arrays

* Logical

* Cell arrays

* Structures

* String arrays

* Enumerations

* Datetime arrays

See Also
prodserver.addon.install

More About
. “Execute Deployed MATLAB Functions” on page 8-5

8-3

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

8 MATLAB Client

. “Get and Manage Add-Ons” (MATLAB)
. “Execute Deployed Functions Using HTTPS” on page 8-17

8-4

Execute Deployed MATLAB Functions

Execute Deployed MATLAB Functions

In this section...

“Install MATLAB Client for MATLAB Production Server” on page 8-5

“Deploy MATLAB Function on Server” on page 8-5

“Install MATLAB Production Server Add-On for the Deployable Archive” on page 8-6
“Manage Installed Add-On” on page 8-8

“Invoke Deployed MATLAB Function” on page 8-9

This example shows how to use MATLAB Client for MATLAB Production Server to invoke a MATLAB
function deployed to an on-premises MATLAB Production Server instance.

MATLAB Client for MATLAB Production Server uses MATLAB Production Server add-ons to
communicate between a MATLAB client and a server instance. A MATLAB Production Server add-on
makes the functions in an archive deployed on MATLAB Production Server available in MATLAB. A
deployed archive and its corresponding MATLAB Production Server add-on have the same name.

Installing the MATLAB Production Server add-on in your MATLAB desktop environment allows you to
use the functions from a deployed archive in MATLAB. Installing a MATLAB Production Server add-on
creates proxy functions of the deployed functions locally. The proxy functions manage communication
between the deployed MATLAB functions and the clients that invoke the deployed functions. A proxy
function and its corresponding deployed function have the same name. Since the proxy functions are
MATLAB functions, you can call them from the MATLAB command prompt, other functions, or scripts.
You can also compile the functions and scripts that contain the proxy functions. You can install
MATLAB Production Server add-ons using the prodserver.addon.install function at the
MATLAB command prompt or using the MATLAB Production Server Add-On Explorer.

Calling the proxy MATLAB function sends an HTTP request across the network to an active MATLAB
Production Server instance. The server instance calls the MATLAB function in the deployable archive
and passes to it the inputs from the HTTP request. The return value of the deployed MATLAB function
follows the same path over the network in reverse.

The following example describes how to install MATLAB Production Server add-ons and execute a
deployed MATLAB function.

Install MATLAB Client for MATLAB Production Server

Install the MATLAB Client for MATLAB Production Server support package to your MATLAB desktop
environment using the MATLAB Add-On Explorer. For information about installing add-ons, see “Get
and Manage Add-Ons” (MATLAB).

Deploy MATLAB Function on Server

1 Write a MATLAB function mymagic that uses the magic function to create a magic square.

function m = mymagic(in)
m = magic(in);
end

8 MATLAB Client

2 Package the function mymagic in an archive named mathfun. You must include a MATLAB
function signature file when you create the archive. For information about creating the function
signature file, see “MATLAB Function Signatures in JSON”.

3 Deploy the archive mathfun on a running MATLAB Production Server instance. The server
instance must have the discovery service enabled. For information about enabling the discovery
service, see “Discovery Service”. The server administrator typically deploys the archive and
configures the server.

For information on how to create and deploy the archive, see “Create Deployable Archive for
MATLAB Production Server” on page 1-2 and “Deploy Archive to MATLAB Production Server”.

Install MATLAB Production Server Add-On for the Deployable Archive

From your MATLAB desktop environment, install the MATLAB Production Server add-on for the
deployed archive using the MATLAB Production Server Add-On Explorer. Installing the add-on
makes the MATLAB functions deployed on the server available to your MATLAB client programs. The
MATLAB Production Server Add-On Explorer is different from MATLAB Add-On Explorer.

Launch MATLAB Production Server Add-On Explorer

From a MATLAB command prompt, launch the MATLAB Production Server Add-On Explorer
using the command prodserver.addon.Explorer.

>> prodserver.addon.Explorer

4| MATLAB Production Server Add-Ons - X

MATLAB Production Server Add-On Explorer

Servers and Add-Ons
Add-Ons

Manage.

Servers

New..

8-6

Execute Deployed MATLAB Functions

Add Server Information

In the MATLAB Production Server Add-On Explorer, add information about the server that hosts
the deployable archive mathfun.
In the Servers section, click New.

2 Enter the host name of the server in the Host box and the port number in the Port box. For
example, for a server running on your local machine on port 64692, enter Localhost for Host
and 64692 for Port.

3 Click OK to add the server.
After you add the server, you can click Check Status to check the server status.

You can add multiple servers.

4] MATLAE Production Server Address - o X

Host | localihost
Fort 54532 o HTTP HTTPS

Add server even if unavailable

OK Cance

Install Add-On

After you add a server, the Servers and Add-Ons section lists the server and the MATLAB
Production Server add-ons that can communicate with the server. If you add multiple servers, this
sections lists all the servers and the add-ons that can communicate with each server grouped under
the server that hosts them.

Install the mathfun add-on to make the MATLAB function mymagic from the deployable archive
mathfun available in your MATLAB client programs.

1 Select the mathfun add-on.
2 Inthe Add-Ons section, click Install. This installs the add-on.

8 MATLAB Client

4\ MATLAB Production Server Add-Ons - b4

MATLARB Production Server Add-On Explorer

Servers and Add-Ons
w hitp:/localhost 64692 Add-Ons
v mathfun (R2020b)

Remove

Help

Manage..

Servers

New..

Check Status

Manage Installed Add-On

After you install a MATLAB Production Server add-on, the MATLAB Add-On Manager lists it. You can
perform tasks such as enabling, disabling and uninstalling the add-on, and viewing details about the
add-on. Viewing the add-on in Add-On Explorer is not supported.

4\ Add-On Manager - (m] X
Installed Updates Get Add-Ons
&)
Name Type Author Ins... -
mathfun:
Hosted by
- MATLAB
.&-’.- = Toolbox 10 Dec...
| Production :
Server version (] Open Folder
1.00
‘ (iy View Details
MATLAB 3 .
Client for 3:, View in Add-On Explorer
MATLAB Optional 7 Enabled
Production Feature '
Server version [l Uninstall.
20.2.2

Execute Deployed MATLAB Functions

Invoke Deployed MATLAB Function

Installing an add-on creates proxy MATLAB functions locally that let you invoke MATLAB functions
deployed on the server. You can call the proxy functions interactively from the MATLAB command
prompt, other MATLAB functions, scripts, or standalone applications that in turn invoke the deployed
MATLAB functions.

You can install multiple add-ons that have the same name but are hosted on different servers. The
proxy functions that the add-ons create appear on the MATLAB search path. When you call a proxy
function, the function with the same name that appears nearest to the top of the MATLAB search path
is invoked. For more information about the MATLAB search path, see “What Is the MATLAB Search
Path?” (MATLAB).

Invoke Deployed MATLAB Function from Command Line

For example, to invoke the mymagic function hosted on the server, you can call the proxy mymagic
function from the matfun add-on at the MATLAB command prompt.

>> mymagic(3)
This prints a 3 by 3 magic square.
Invoke Deployed MATLAB Function from MATLAB Function

You can call the installed add-on proxy function in your MATLAB function and script. For example,
write a simple MATLAB program mytranspose.m that creates a transpose of the magic square that
you created using the proxy function mymagic.

function mytranspose
A = mymagic(5);
A.'
end
Running mytranspose prints the transpose of a 5 by 5 magic square.
>> mytranspose

Invoke Deployed MATLAB Function from Standalone Executable

You can call the installed add-on proxy function in your MATLAB function and then create a
standalone executable from the MATLAB function. For example, you can create a standalone
executable from the mytranspose MATLAB client function using MATLAB Compiler.

>> mcc -m mytranspose

Run the standalone executable mytranspose at the system command prompt. You might need to
install MATLAB Runtime if it is not installed on your machine. For more information, see MATLAB
Runtime.

C:\mytranspose> mytranspose
This prints a transpose of a 5 by 5 magic square.

You can configure the standalone executable to use time out values other than the default or use a
different address for the server. For more information, see “Configure Client-Server Communication”
on page 8-11.

8-9

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

8 MATLAB Client

8-10

You can find more examples in the support package root\toolbox\mps\matlabclient\demo
folder, where support package root is the root folder of support packages on your system. You
can access the documentation by entering the doc command at the MATLAB command prompt or
clicking the Help button in MATLAB desktop. In the Help browser that opens, navigate to MATLAB
Client for MATLAB Production Server under Supplemental Software.

See Also
prodserver.addon.Explorer | prodserver.addon.install

More About

. “Connect MATLAB Session to MATLAB Production Server” on page 8-2
. “Get and Manage Add-Ons” (MATLAB)

. “Discovery Service”

. “MATLAB Function Signatures in JSON”

Configure Client-Server Communication

Configure Client-Server Communication

You can override the default configuration that MATLAB Production Server add-ons use for client-
server communication by setting environment variables and updating the MATLAB Production Server
add-on configuration file located on the client machine. You might want to override the default
configuration if your network is reliable, if your application is time critical, or if you want to change
the server information for add-ons packaged into standalone executables.

Configure Timeouts and Retries

When you use MATLAB Client for MATLAB Production Server, the proxy functions in the MATLAB
Production Server add-ons communicate with the functions of an archive deployed to a MATLAB
Production Server instance. If the server takes too long to send a response, the client request times
out. When a timeout occurs, the add-ons can report the error or silently try sending the request
again.

MATLAB Production Server add-ons support two types of timeouts and one retry strategy. To override
the default timeout durations and the default strategy for request retries, set MATLAB Production
Server add-on environment variables.

Set Initial TCP Connection Timeout

Set the PROSERVER ADDON CONNECT TIMEOUT environment variable to the number of seconds that
an add-on function must wait before timing out when attempting to connect to a MATLAB Production
Server instance. This is the initial TCP connection timeout.

By default, the operating system sets the TCP connection timeout value, typically, to 60 seconds or
less, and might limit the value that you can set.

Typically, you do not need to set this value. If the server does not respond within the set time period,
the add-ons generate an MPS:MATLAB:AddOn:RequestTimeout error.

Set Function Processing Timeout

Set the PRODSERVER _ADDON_FUNCTION TIMEOUT environment variable to the number of seconds
that an add-on function must wait for the deployed function to complete processing, which includes
making the initial connection, and returning a response to the client.

The default behavior is to wait forever for the function to finish processing and never time out.

If your network is reliable or your application is time critical, you might set the environment variable
so that the client request can time out earlier. Since the processing time for the add-on function
includes the time to make a TCP connection with the server, do not set
PRODSERVER ADDON FUNCTION TIMEOUT to a non-zero value smaller than
PRODSERVER ADDON CONNECT TIMEOUT. If the deployed function does not return a complete
response within the timeout value that you set, an MPS:MATLAB:AddOn:RequestTimeout error
occurs.

Configure Function Retries

Set the PRODSERVER ADDON FUNCTION RETRIES environment variable to the number of times that
an add-on retries a single function call that times out. The add-on retries only those functions that
time out. The add-on generates an error if a function fails for any other reason.

8-11

8 MATLAB Client

8-12

The default behavior specifies not to retry functions that time out and to report
MPS :MATLAB:AddOn:RequestTimeout errors on the first timeout.

If the number of timeouts exceeds the value that you set, the add-on reports an
MPS:MATLAB:AddOn:RequestTimeout error.

Set Environment Variables

To control the timeouts in a MATLAB session, set the environment variables using the setenv
function. For example:

Retry three times on timeout for the MATLAB function mandelflake:

>> setenv('PRODSERVER ADDON FUNCTION RETRIES','3')
>> mandelflake

To control the timeouts in a standalone executable or software component, set the environment
variables using commands specific to your operating system, typically setenv on Linux and macOS,
and set on Windows. For example:

* Retry three times on timeout for the Linux standalone executable mandelflake:

% setenv PRODSERVER ADDON FUNCTION RETRIES 3
% mandelflake

* Retry three times on timeout for a Windows standalone executable mandelflake. exe:

C:\> set PRODSERVER ADDON_ FUNCTION RETRIES=3
C:\> mandelflake.exe

Update Server Configuration

The MATLAB Production Server add-on configuration file specifies the association and dependency
between the MATLAB Production Server add-on proxy functions and the MATLAB Production Server
deployable archives from which you install the proxy functions. By default, the add-on proxy functions
communicate with the MATLAB Production Server instance from which you install them. If the
network address or the application access control configuration of the server instance changes, you
can modify the configuration file to include the updated server information. For example, the network
address of the server can change if you move from a testing environment to a production
environment. The access control configuration can change if the Azure AD app registration
credentials of the server change.

The configuration file lets you easily change server-specific information without rebuilding the
deployable archive or reinstalling the add-on, since the mapping between an add-on and an archive is
in the configuration file that is external to both. This external mapping is especially useful when you
want to change the server information for add-on proxy functions that are packaged into a standalone
executable or deployable software component, since standalone executables and deployable software
components can also be shared and used on machines that are different from those that package
them.

Update Add-On Configuration File

The default name of the add-on configuration file is prodserver addon config.json. A sample
configuration file follows.

"Installed": {

Configure Client-Server Communication

"Scheme": "http",
"Host": "localhost",

"Port": 9990,

"Config": {
"AccessTokenPolicy":"none",
"ClientID": "",
"IssuerURI": "",
"ServerID": ""

b

"AddOns": {

"name": "fractal (R2020b)",
"uuid": "e3325106-4297-47d2-9ec8-9df64195fce3",
"archiveID": "fractal 311a3f55107d8d603cc3d91707bf2feb"
}
+

"SchemaVersion": 1.2

}

The sample configuration file describes a single add-on fractal that requires MATLAB Runtime
version R2020b and a deployable archive fractal hosted by a MATLAB Production Server instance
at network address locahost:9990.

To update the network address of the server, update the values corresponding to the Host and Port
fields. To update the access control configuration of the server, update the values in the Config
object. If you do not manage the server, you can obtain these values from the server administrator.
For more information about configuring access control when using the add-ons, see “Application
Access Control” on page 8-14.

Update Add-On Configuration File Location

The default location of the add-on configuration file is in the MATLAB user preference directory of the
machine on which the add-on function is installed. To locate the preferences directory on your
machine, run prefdir at the MATLAB command prompt.

You can save the add-on configuration file in a different location and also change the name of the add-
on configuration file. To specify a different location or name than the default, set the
PRODSERVER ADDON CONFIG environment variable. When setting the variable, you must specify the
full path to the file from the root of the file system. You might save the add-on configuration file in a
different location when you want to update the server configuration for add-on proxy functions that
are packaged into standalone executables or shared components.

See Also

More About

. “Execute Deployed MATLAB Functions” on page 8-5

. “Execute Deployed Functions Using HTTPS” on page 8-17
. “Application Access Control” on page 8-14

. “Manage Add-Ons” on page 8-20

8-13

8 MATLAB Client

Application Access Control

8-14

MATLAB Production Server uses Azure Active Directory (Azure AD) to restrict access to deployed
applications to only certain groups of users. If access control is enabled on the server that a MATLAB
client application communicates with, the client application must send a bearer token when it sends
requests to the server. The bearer token identifies the user that is executing the client application.
Based on the bearer token, the server grants or denies access to client applications for executing
deployed applications.

Prerequisites

Access control is enabled on the server. For more information, see “Application Access Control”.

The MATLAB Production Server add-on of the deployed application is installed on the client
machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 8-5.

Configure Access Control

Configure access control on the client machine to send a bearer token in server requests. You can
send either a system-generated bearer token or specify a bearer token.

Use System-generated Bearer Token

To enable a client application that you write using MATLAB Client for MATLAB Production Server to
send a system-generated bearer token to a server, you must set the Azure AD app registration
credentials and set an access token policy. Obtain the ServerID, ClientID and IssuerURI of the
Azure AD apps that your organization uses for user authorization from the MATLAB Production
Server administrator or the Azure AD administrator of your organization. Typically, you must set
these credentials once for each server instance that your MATLAB client applications communicate
with.

* ServerID — Application ID of the server app registered on Azure AD that is used for user
authorization. The ServerID value must be the same as the appID value in the access control
configuration file present on the MATLAB Production Server instance. For more information, see
“Access Control Configuration File”.

* (ClientID — Application ID of the client app registered on Azure AD that is used for user
authorization.

* IssuerURI — URI followed by the Azure AD tenant ID that the client uses to generate a bearer
token for a user.

Run the prodserver.addon.accessTokenPolicy function at the MATLAB command prompt to
set the Azure AD app registration credentials and specify the automatic access token policy to use a
system-generated bearer token. Also specify as arguments, the host name and port of the MATLAB
Production Server instance that your add-on communicates with.

>> prodserver.addon.accessTokenPolicy('localhost',51133, 'automatic’, ...
'ClientID', '0d963963-€439-41d0-822c-b15ayu8937c3’, ...

'ServerID', 'd19d8po0-7977-4213-a05a-10kjna82fbaf’, ...

"IssuerURI', 'https://login.microsoftonline.com/yourcompany.com')

The MATLAB Production Server Add-On Explorer does not support setting the Azure AD app
registration credentials.

Application Access Control

Specify Bearer Token

If you want to specify your own bearer token, you can use the
prodserver.addon.accessTokenPolicy function to do so.

>> prodserver.addon.accessTokenPolicy('localhost',51133, 'your access token')
Set Access Token Policy Using MATLAB Production Server Add-On Explorer App

You can use the MATLAB Production Server Add-On Explorer to switch between using a system-
generated bearer token or specifying your own bear token.

1 In the MATLAB Production Server Add-On Explorer app, select the server that you want your
client applications to communicate with, then click Config.

4. MATLAB Production Server Add-Ons — X

MATLARB Production Server Add-On Explorer

Servers and Add-Ons
| + http://localhost-51133 ‘ Add-Ons
v mpsTestData (R2020b)

Remove

Manage. ..

Servers
New. .
Remove

Check Status

Config... |

2 In the dialog box that opens, configure the access token policy. Choose Generate token
automatically to let the software generate an access token for you, or choose Use this token
and specify the access token. Click OK to save your selection.

You must set the serverID, clientID, and IssuerURI parameters from the command line
before making a selection to use the system-generated token.

8-15

8 MATLAB Client

4\ Access token policy - O

(@) Generate token automatically
Use this token

Do not send token

OK Cancel

See Also
prodserver.addon.accessTokenPolicy

More About

. “Application Access Control”
. “Execute Deployed MATLAB Functions” on page 8-5

8-16

Execute Deployed Functions Using HTTPS

Execute Deployed Functions Using HTTPS

Connecting to a MATLAB Production Server instance over HTTPS provides a secure channel for
executing MATLAB functions. To establish an HTTPS connection with a MATLAB Production Server
instance:

1 Ensure that the server instance is configured to use HTTPS. For more information, see “Enable
HTTPS”.

2 If the server instance uses a self-signed SSL certificate or if the root certificate of the server is
not present in the trust store of the client machine, you must save the server certificate on the
client machine.

3 Install MATLAB Production Server add-ons using HTTPS.

MATLAB Client for MATLAB Production Server does not support sending a client certificate to the
server. Therefore, you cannot use MATLAB Client for MATLAB Production Server to install add-ons
from a server or execute functions deployed to a server that has client authentication enabled.

Save SSL Certificate of Server

Before your client application can send HTTPS requests to a server instance, the root SSL certificate
of the server must be present in the Windows Trusted Root Certification Authorities certificate store
or Linux trust store of the client machine. If the server uses a self-signed SSL certificate or if the root
certificate of the server signed by a certificate authority (CA) is not present in the Windows certificate
store, obtain the server certificate from the MATLAB Production Server administrator or export the
certificate using a browser, then add it to the certificate store or the trust store.

Export and Save SSL Certificate

You can use any browser to save the server certificate on the client machine. The procedure to save
the certificate using Google Chrome™ follows.

1 Navigate to the server instance URL https://your server FQDN:port/api/health using
Google Chrome.

2 In the Google Chrome address bar, click the padlock icon or the warning icon, depending on
whether the server instance uses a CA-signed SSL certificate or a self-signed SSL certificate.

3 Click Connection is Secure for a CA-signed SSL certificate or Certificate is not Valid for a
self-signed SSL certificate. Then click Details > Copy to File. Doing so opens a wizard that lets
you export the SSL certificate. Click Next.

Select the format to export the certificate and click Next.
5 Specify the location and file name to export the certificate, then click Next.
Click Finish to complete exporting the certificate.

Add Certificate to Windows Certificate Store

You can use a certificate management tool or Microsoft Management Console (MMC) to add the
server certificate to the Windows certificate store. For details on adding the certificate using MMC,
see Add Certificates to the Certificate Store on the Microsoft website.

Specify Custom Path to Certificate

MATLAB Client for MATLAB Production Server searches the default trust store for the server
certificate, but also supports specifying the full path to a certificate file. Typically, you want to specify

8-17

https://docs.microsoft.com/en-us/biztalk/adapters-and-accelerators/accelerator-swift/adding-certificates-to-the-certificates-store-on-the-client#to-add-certificates-to-the-certificate-store

8 MATLAB Client

a path to the server certificate during testing. To do so, set the CertificateFile property using the
prodserver.addon.set function. The value of the CertificateFile property persists between
MATLAB sessions.

>> prodserver.addon.set('CertificateFile', '/path/to/my/certificate name.certificate extension')

Install Add-On Using HTTPS

The default protocol for communication with the server is HTTP. If the server uses HITTPS, you must
install an add-on from that server using HTTPS. Your MATLAB session can use HTTP with one server
and HTTPS with another server simultaneously.

Install Add-On Using Command Line

Use the prodserver.addon.install function and set the TransportLayerSecurity property to
true to use HTTPS.

>> prodserver.addon.install('fractal', 'localhost', 9920, 'TransportLayerSecurity', true)
Install Add-On Using Graphical Interface

1 In the Servers section in the MATLAB Production Server Add-On Explorer app, click New.
Doing so opens a dialog box where you enter details about the MATLAB Production Server
instance that the MATLAB client wants to communicate with using HTTPS.

2 Enter the host name and port number of the server instance, select HTTPS, then click OK. Doing
so enables HTTPS communication between your MATLAB client and the server instance.

Manage Default Protocol for Client-Server Communication

Set the protocol for client-server communication to HTTPS by using the prodserver.addon.set
function and setting the TransportlLayerSecurity property to true. The protocol setting persists
between MATLAB sessions.

prodserver.addon.set('TransportLayerSecurity', true);

View the current value of the TransportLayerSecurity property using the
prodserver.addon.get function.

prodserver.addon.get('TransportLayerSecurity');
ans =
logical
1

See Also

prodserver.addon.install | prodserver.addon.get | prodserver.addon.set |
prodserver.addon.accessTokenPolicy

External Websites
. “Execute Deployed MATLAB Functions” on page 8-5

8-18

Execute Deployed Functions Using HTTPS

“Application Access Control” on page 8-14

8-19

8 MATLAB Client

Manage Add-Ons

The MATLAB Production Server Add-On Explorer provides a graphical interface to find, install,
and manage MATLAB Production Server add-ons. It requires MATLAB Client for MATLAB Production
Server. To open MATLAB Production Server Add-On Explorer, enter
proserver.addon.Explorer at the MATLAB command prompt.

4 MATLAB Production Server Add-Ons - =

MATLARB Production Server Add-On Explorer

Servers and Add-Ons.
Add-Ons

Manage

Servers

Mew..

* The Servers section lets you add and remove MATLAB Production Server instances from which
you can install add-ons, check server status, and configure access control for executing deployed
applications.

* The Add-Ons section provides options to install and remove MATLAB Production Server add-ons,
view help text for the add-ons, and manage add-ons using the MATLAB Add-On Manager.

* The Servers and Add-Ons section lists the add-ons grouped by server.

Install Add-Ons

Installing MATLAB Production Server add-ons in your MATLAB desktop environment allows you to
use the functions from an archive deployed to a MATLAB Production Server instance in MATLAB. You
must add information about the server instances before you can install add-ons from them.

Add Server

In the Servers section of MATLAB Production Server Add-on Explorer, click New.

2 Enter the host name of the server in the Host box. Use a name such as localhost or
addons.yourcompany.com, or a numeric address such as 127.0.0. 1.

3 Enter the port number in the Port box. Port numbers are integers between 1 and 65535.

Select the protocol, HTTP or HTTPS, that the server uses. You can find which protocol a server
expects by examining the MATLAB Production Server configuration file main config or by
making a request to the GET Discovery Information from a browser.

8-20

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server
https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

Manage Add-Ons

5 Select Add server even if unavailable, only if you want to add a server that is not yet available.
You might do this if you plan to start the server later.

6 Click OK to add the server.

4 MATLAE Production Server Address - O x>
Host localhost
Fort B4R52 o HTTP HTTFS
Add server even if unavailable
OK Cancel

To check the server status, select the server from the Servers and Add-Ons section, then click
Check Status.

To remove a server, select the server from the Servers and Add-Ons section, then click Remove.
Removing a server also removes the add-ons installed from the server.

Install Add-On

After you add a server, the Servers and Add-Ons section lists the server and the MATLAB
Production Server add-ons that can communicate with the server. If you add multiple servers, this
sections lists all the servers and the add-ons that can communicate with each server, grouped under
the server that hosts them.

To install an add-on, select the add-on from the Servers and Add-Ons section, then click Install in
the Add-Ons section.

The following graphic shows a server instance running at http:localhost:64692 that has the
mpsTestdata and the fractal add-ons available. The check mark indicates that the mpsTestdata
add-on is installed on the client machine.

4 MATLAB Production Server Add-Ons = >
MATLAB Production Server Add-On Explorer
Servers and Add-Ons
| = ntto:/Mocalhost 64692 | Add-ons
+ mpsTestData (R20200) "
Install
fractal (R20206)
Remaove
Manage
Servers
Mew.,
Remove
Check Status
Config

8-21

8 MATLAB Client

8-22

For information about installing add-ons from the MATLAB command prompt, see
prodserver.addon.install.

For information about executing deployed applications using the installed add-ons, see “Execute
Deployed MATLAB Functions” on page 8-5 and “Execute Deployed Functions Using HTTPS” on page
8-17.

Remove Add-Ons

To remove add-ons, select them from the Servers and Add-Ons section, then click Remove from the
Add-Ons section. Functions from removed add-ons are no longer available to MATLAB.

For information about uninstalling add-ons from the MATLAB command prompt, see
prodserver.addon.uninstall.

Get Information about Add-Ons

To view information about an add-on, select the add-on from the Servers and Add-Ons section, then
click Help from the Add-Ons section. Add-Ons do not need to be installed for you to browse their
help.

Select a function to view the help text written by the function author.

The following graphic shows the help text for the mandelbrot function present in the fractal add-
on.

4 Production Server Add-On Help Browser = a >

Production Server AddOn: fractal

Functions | Im] = mandelbrot (width, iterations)
[outiing] = snowfake (n)

MANDELEROT Genarate Mandebrol et with WIDTH picals on the X s

m = MANDELBROT(WIDTH, ITERATIONS) uses the "Escape Time™ algonthm to
genarale a Mandelbrot set WIDTH phels wide and (5/6 * WIDTH) pixels

tail. The color of each plxel depends on the number of steps required

for an ferative senes to diverge to infindy. If the senes ata

given pixel does not diverge after ITERATIONS steps, the pixel is

colored black

Algonthms based on the Wikipedia article
hitpcifen wikipedia org/wikiMandelbrol_sel

OK

Manage Add-Ons

Manage Add-Ons
After you install a MATLAB Production Server add-on, the MATLAB Add-On Manager lists it. You
can perform tasks such as enabling, disabling and uninstalling the add-on, and viewing add-on

details.

Removing an add-on from the MATLAB Production Server Add-On Explorer is equivalent to
uninstalling from the MATLAB Add-On Manager.

Disabling an add-on removes the add-on from the MATLAB path.

The following graphic shows the mpsTestData add-on in the MATLAB Add-On Manager.

4\ Add-On Manager - (m] X
Installed Updates Get Add-Ons
(&)
Name Type Author Ins... =
mpsTestData:
Hosted by
*} MATLAB Toolbox 10 Dec..
Production
Server version [3 Open Folder
1.0.0
4y View Details
MATLAB o "
Client for oy Viewin Add-On Explorer
MATLAB , Optional ¥ Enabled
Production Feature
Server version @@ Uninstall
20.2.2

Manage Access to Applications Deployed on Server

If a client program that you write using MATLAB Client for MATLAB Production Server wants to
execute applications deployed to a server that has application access control enabled, the client must
send a bearer token in server requests. The bearer token identifies the client. To specify a bearer
token, select the server from the Servers and Add-Ons section, then click Config in the Servers
section. For more information on how to specify bearer tokens, see “Application Access Control” on
page 8-14.

For information about specifying a bearer token from the MATLAB command prompt, see
prodserver.addon.accessTokenPolicy.

See Also

prodserver.addon.install | prodserver.addon.accessTokenPolicy |
prodserver.addon.Explorer | prodserver.addon.availableAddOns |
prodserver.addon.isInstalled | prodserver.addon.uninstall

More About
. “Execute Deployed MATLAB Functions” on page 8-5

8-23

8 MATLAB Client

. “Execute Deployed Functions Using HTTPS” on page 8-17
. “Application Access Control” on page 8-14

8-24

Deploy Add-Ons

Deploy Add-Ons

MATLAB deployment tools such as MATLAB Compiler and MATLAB Compiler SDK package MATLAB
functions for deployment to environments external to the MATLAB desktop. These deployment tools
can also package the proxy functions that MATLAB Production Server add-ons install to create
deployable software components that require both the external environment and an active MATLAB
Production Server instance.

For example, consider a deployable archive fractal.ctf that contains a MATLAB function
mandelbrot hosted on a MATLAB Production Server instance.

You can install the fractal add-on on a client machine from the fractal archive using MATLAB
Client for MATLAB Production Server. Installing the fractal add-on installs the proxy mandelbrot
function on your machine. Then, you can write a client program in MATLAB that uses the proxy
mandelbrot function.

You can also package the proxy mandelbrot function into a shared library, for example,
fractal.dll, using MATLAB Compiler SDK. Then, you can write a C++ client program that uses
fractal.dll.

The following diagram shows the MATLAB client (in blue) and the C++ client (in green) calling the
same proxy mandlebrot function to communicate with the mandelbrot function deployed to a
MATLAB Production Server instance.

HTTP TN
o : > (Network .) . MATLAB
roucy > M~ Production
mandelbrot | | Server
fractal Add-On MATLAB HTTP
Compiler [
o Proxy Funct;ﬂ
— mandelbrot
Functi -
unction — fractal.dll
call -

Fum;tu;m Actual
call mandelbrot
MATLAB
C++ Client fractal.ctf
Application

The following examples show how to package installed proxy functions into a standalone executable,
a shared library, and a deployable archive. The examples use files in the support package root
\toolbox\mps\matlabclient\demo folder on your system. The demo folder contains the following
folders:

+ fractal — Contains mandelbrot and snowflake MATLAB functions. The mandelbrot function
generates a Mandelbrot set and the snowflake function generates the outline of a Koch
snowflake. You package these MATLAB functions into a MATLAB Production Server deployable
archive.

8-25

8 MATLAB Client

8-26

* mandelflake — Contains the mandelflake MATLAB function that displays the Mandelbrot set
and the Koch snowflake. You package the mandelflake function into a standalone executable.

+ fractalViewer — Contains the twoFractals MATLAB function that displays the Mandelbrot
set and the Koch snowflake based on input arguments that you specify. You package the
twoFractals function into a shared library and a deployable archive.

Prerequisites

The examples require that you have the fractal MATLAB Production Server add-on available in
your MATLAB session. The examples package the proxy functions from the fractal add-on into a
standalone executable, a shared library, and a deployable archive. To make the fractal add-on
available in MATLAB:

1 Package the mandelbrot and snowflake MATLAB functions from the \demo\fractal\ folder
into a deployable archive called fractal using the Production Server Compiler app. You must
include a MATLAB function signature file when you create the archive. For more information
about packaging archives, see “Package Deployable Archives with Production Server Compiler
App” on page 1-7.

2 Deploy the fractal archive to a MATLAB Production Server instance. For more information
about deploying the archive, see “Deploy Archive to MATLAB Production Server”.

Confirm with the server administrator that the discovery service is enabled on the server. For
more information, see “Discovery Service”.

3 Install the fractal add-on in your MATLAB desktop. For more information about installing add-
ons, see prodserver.addon.install. For a detailed example about installing MATLAB
Production Server add-ons, see “Execute Deployed MATLAB Functions” on page 8-5.

You can verify that the fracatl add-on is available in your MATLAB session by running
prodserver.addon.availableAddOns. To test your installation of the fractal add-on, you can
run the example MATLAB function mandelflake that is in \demo\mandelflake at the MATLAB
command prompt.

The standalone executable and shared library require MATLAB Runtime. Install MATLAB Runtime on
your machine if you have not already done so. For more information, see MATLAB Runtime.

Create Standalone Executables That Use Add-Ons

This example shows how to package a proxy function that a MATLAB Production Server add-on
installs, into a standalone executable to invoke a MATLAB function hosted on a MATLAB Production
Server instance. This example requires MATLAB Compiler. You can run standalone executables on
computers that do not have MATLAB installed.

1 For this example, copy the contents of the support package root\toolbox\mps
\matlabclient\demo\mandelflake folder to a separate writeable location on your system,
for example, to a folder called mandelflake.

2 Navigate to the writeable mandelflake folder from the MATLAB command prompt. The
mandelflake folder contains a MATLAB function called mandelflake. Use the mcc command
to create a standalone executable called mandelflake from the mandelflake MATLAB
function.

>> cd mandelflake
>> mcc -m mandelflake

https://www.mathworks.com/products/compiler/matlab-runtime.html

Deploy Add-Ons

This command produces an executable file mandelflake.exe on a Windows system.

On Linux and Mac OS, it produces an executable called mandelflake.

Run the executable at the system command prompt to display the Mandelbrot set and Koch
snowflake.

C:\mandelflake> mandelflake

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

Create Shared Libraries or Software Components That Use Add-Ons

This example shows how to package a proxy function that a MATLAB Production Server add-on
installs, into a shared library, then use the shared library in a C++ client to invoke a MATLAB
function hosted on a MATLAB Production Server instance. This example requires MATLAB Compiler
SDK and a supported C++ compiler. For a list of supported C++ compilers, see Supported and
Compatible Compilers. MATLAB Compiler SDK creates software components, such as shared
libraries, from MATLAB functions.

1

For this example, copy the contents of the support package root\toolbox\mps
\matlabclient\demo\fractalViewer folder to a separate writeable location on your system,
for example, to a folder called fractalViewer. The fractalViewer folder contains the
following:

* A MATLAB function twoFractals that displays images of the Mandelbrot set and the Koch
snowflake based on the input arguments to the function

* A C++ application fractalViewer that invokes the twoFractals function with the
required input arguments

Navigate to the writeable fractalViewer folder from the MATLAB command prompt. Use the

mcc command to create a shared library called twoFractals.lib from the twoFractals.m

MATLAB function.

>> cd fractalViewer

>> mcc -W cpplib:twoFractals twoFractals.m

The twoFractals shared library requires a client to utilize its public interface. Use the mbuild
function to compile and link the fractalViewer C++ application against the twoFractals
shared library. The fractalViewer C++ application invokes the twoFractals function with
the appropriate inputs.

>> mbuild fractalViewer.cpp twoFractals.lib

This command produces an executable file fractalViewer.exe and a shared library
twoFractals.dll on a Windows system.

On Linux, it produces an executable twoFractals.so and a shared library fractalViewer. On
Mac OS, it produces an executable twoFractals.dylib and a shared library fractalViewer.
Run the fractalViewer executable at the system command prompt to display the Mandelbrot
set and Koch snowflake.

C:\fractalViewer> fractalViewer

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

8-27

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

8 MATLAB Client

Create Deployable Archives That Use Add-Ons

This example shows how to package a proxy function that is in one MATLAB Production Server add-

on into a MATLAB Production Server archive, from which you can install a second MATLAB
Production Server add-on. In this case, the proxy functions of the second add-on call the proxy
functions of the first add-on, which in turn call the actual functions (functions hosted on the first
MATLAB Production Server instance) of the first add-on. With this feature, you can chain together
multiple MATLAB Production Server archives. However, longer chains require more network

resources and run more slowly. Application access control is not supported for deployed archives that

contain the add-on proxy functions.

This example requires MATLAB Compiler SDK.

1 For this example, copy the contents of the support package root\toolbox\mps

\matlabclient\demo\fractalViewer folder to a separate writeable location on your system,
for example, to a folder called fractalViewer. The fractalViewer folder contains a MATLAB

function twoFractals that displays images of the Mandelbrot set and the Koch snowflake.
2 Create a MATLAB function signature file twoFractalsFunctionSignatures.json in the

writeable fractalViewer folder. You require a MATLAB function signature file when you create

a deployable archive of the twoFractals function. For more information, see “MATLAB
Function Signatures in JSON”. A sample MATLAB function signature file follows.

twoFractalsFunctionSignatures.json

8-28

Function Signatures

To optionally specify argument types and/or sizes, search for "type"
and insert the appropriate specifiers inside the brackets. For example:
"type": ["double", "size=1,1"]
To modify function or parameter help text, search for "purpose" and edit
the values.
JSON-formatted text below this line.
" schemaVersion": "1.1.0",
"twoFractals": {
"inputs": [
{
"name": "maxIterations",
"type" : [] ,
Ilpurposell: nn
I
{
"name": "width",
Iltypell : [] ,
Ilpurposell: nn
I
{
"name": "complexity",
"type" : [] ,
Ilpurposell: nn
}

]

"outputs": [],
"purpose":

" TWOFRACTALS Display Mandelbrot set and

Koch

snowflake.\n"

Deploy Add-Ons

}
}

3 Navigate to the writeable fractalViewer folder from the MATLAB command prompt. Use the
mcc command to create a deployable archive twoFractal.ctf from the twoFractals.m
MATLAB function.
>> cd fractalViewer
>> mcc('-W', 'CTF:twoFractals,DISCOVERY:twoFractalsFunctionSignatures.json','-U"', 'twoFractals.

4 Copy the resulting archive, twoFractals.ctf, to the auto deploy folder of a MATLAB
Production Server instance.

5 Then, install the twoFractals MATLAB Production Server add-on. For example, if your MATLAB
Production Server instance has the network address Localhost:9910, use the following
command:
>> prodserver.addon.install('twoFractals', 'localhost',9910)

6 Finally, invoke the twoFractals proxy function:
>> twoFractals(300,600,5)

Two windows appear, one containing the Mandelbrot set and one displaying the Koch snowflake.

See Also

More About

“Execute Deployed MATLAB Functions” on page 8-5
“Execute Deployed Functions Using HTTPS” on page 8-17
“Configure Client-Server Communication” on page 8-11

8-29

MATLAB Client Functions

9 MATLAB Client Functions

9-2

prodserver.addon.accessTokenPolicy

Set access token policy for user authorization

Syntax

prodserver.addon.accessTokenPolicy(host,port, token,Name,Value)
prodserver.addon.accessTokenPolicy(host,port, token)

Description

prodserver.addon.accessTokenPolicy(host,port, token,Name,Value) sets the Azure
Active Directory (Azure AD) credentials for user authorization using one or more name-value
arguments and sets a token generation policy to authorize a user that is using MATLAB Production
Server add-ons to communicate with a server running at host:port.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.accessTokenPolicy(host,port,token) sets a token generation policy or
sets the value of a bearer token to authorize a user that is using MATLAB Production Server add-ons
to communicate with a server running at host:port.

Examples

Use System-Generated Bearer Token

To use a system-generated bearer token, you must set the Azure AD app registration credentials
using name-value arguments.

First, make sure that access control is enabled on the server. For more information, see “Application
Access Control”.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 8-5.

Set the system to automatically generate the bearer token to use in requests to a server running at
localhost and port 57142, and also specify Azure AD app registration credentials for user
authorization.

prodserver.addon.accessTokenPolicy('localhost',57142, 'automatic', ...
'ClientID', '0d912326-e439-41d0-822c-bl5asdf6137c3', ...

'ServerID', 'dwe4581bf-7867-4b90-a05a-16be6a82flkh', ...

'IssuerURI', 'https://login.microsoftonline.com/yourcompany.com')

Typically, you set the Azure AD app registration credentials once per server instance.

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.accessTokenPolicy

Specify Bearer Token
Specify a bearer token to use when communicating with a server.
First, enable access control on the server. For more information, see “Application Access Control”.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 8-5.

Specify the bearer token 'bearer token value' to use in requests to a server running at IP
address 10.2.2.5 and port 57142,

prodserver.addon.accessTokenPolicy('10.2.2.5',57142, 'bearer token value')

Do Not Generate Token
Specify that no bearer token is required when access control is not enabled on a server.

Make sure that the MATLAB Production Server add-on of the deployed application is installed on the
client machine. For more information about installing add-ons, see “Execute Deployed MATLAB
Functions” on page 8-5.

Set the system to not generate a bearer token to use in requests to a server running at IP address
10.2.2.5 and port 57142.

prodserver.addon.accessTokenPolicy('10.2.2.5',57142, 'none")

Input Arguments

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.

Example: '144.213.5.7"
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.

Example: 9920
Data Types: uint8 | uint16

token — Access token policy
'none' (default) | 'automatic' | character vector | string scalar

Access token policy, specified as a character vector or string scalar. Set a token generation policy or
specify a bearer token to authorize a user when communicating with a server. Possible options follow:

9-3

9 MATLAB Client Functions

9-4

* ‘'automatic' — Generate bearer tokens using user credentials of the user logged in to the client
machine. Azure AD app registration credentials must be set to use this policy.

* 'none' — Do not generate an access token. This value is the default.
* Character vector or string scalar — Specify a value to use as the bearer token.

If access control is enabled on the server, you must set the policy to 'automatic' or specify a bearer
token.

Example: 'automatic’
Example: 'none’

Example: ' AAAAAAAAAABBBBAAAAAAAMLheAAAAAAADS2BuSepl%2BULVseadJtiGRiSDSISI
%3DEUifiRmndf5E2XzMDjRf176ZC9UbOWNz4XsNiRVBChTYbJCE3F'

Data Types: char | string
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'ClientID', 'd171klbf-7977-4c90-a95a-16by7982fbaf', 'ServerID',
'd7pj91bf-7977-4b90-a05a-17vy5s82fbaf', 'IssuerURI', "https://
login.microsoftonline.com/your organization tenantID'

ClientID — Application ID of Azure AD client app
character vector | string scalar

Application ID of the client app registered in Azure AD used for user authorization, specified as a
character vector or string scalar.

Example: 'ClientID', 'd171k1lbf-7977-4c90-a95a-16by7982fbaf"’
Data Types: char | string

ServerID — Application ID of the Azure AD server app
character vector | string scalar

Application ID of the server app registered in Azure AD used for user authorization, specified as a
character vector or string scalar.

Example: 'ServerID', 'd7pj91bf-7977-4b90-a05a-17vy5s82fbaf"’
Data Types: char | string

IssuerURI — URI to generate token
character vector | string scalar

URI to generate a bearer token, specified as a character vector or string scalar. For Azure AD, the
IssuerURI is https://login.microsoftonline.com/ followed by the Azure AD tenant ID.

Example: 'IssuerURI', 'https://login.microsoftonline.com/
your _organization tenantID'

Data Types: char | string

prodserver.addon.accessTokenPolicy

Version History
Introduced in R2020b

See Also
prodserver.addon.set

Topics
“Application Access Control” on page 8-14
“Execute MATLAB Functions Using HTTPS”

9 MATLAB Client Functions

9-6

prodserver.addon.availableAddOns

MATLAB Production Server add-ons available on active server instance

Syntax

addons
addons
tf)

prodserver.addon.availableAddOns (host,port)
prodserver.addon.availableAddOns(host,port, 'TransportLayerSecurity',

Description

addons = prodserver.addon.availableAddOns (host,port) returns the add-ons available on
an active MATLAB Production Server server instance.

This function requires MATLAB Client for MATLAB Production Server.

addons = prodserver.addon.availableAddOns(host,port, 'TransportlLayerSecurity',
tf) additionally lets you specify the URI scheme (HTTP or HTTPS) of the sever.

Examples

Add-Ons Available on Server
Find the names of add-ons that are available on an active server instance.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy
Archive to MATLAB Production Server”.

Start the server instance running at Llocalhost and port 57142.

Find which add-ons are available on the server.

addons = prodserver.addon.availableAddOns('localhost',57142)

addons =
1x8 table
Name Release Version Installed Identifier
"fractal" "R2020b" "1.0.0" true "76643195-2ba3-4574-8fd0-084cc51251aa"

The output indicates that the fractal add-on is available and is also installed on the client machine.

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.availableAddOns

Add-Ons Available on Server that Uses HTTPS
Find the names of add-ons that are available on an active server instance that uses HTTPS.

First, enable HTTPS on a MATLAB Production Server instance. For more information, see “Enable
HTTPS”.

Host a deployable archive fractal on the server instance. You must include a MATLAB function
signature file when you create the archive. You must enable the discovery service on the server
instance that hosts the archive. For information on how to create and deploy the archive, see “Create
Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy Archive to MATLAB
Production Server”.

Start the server instance running at localhost and port 57143.

Find which add-ons are available on the server.

addons = prodserver.addon.availableAddOns('localhost',57143, 'TransportLayerSecurity',true)

addons =
1x8 table
Name Release Version Installed Identifier
"fractal" "R2020b" "1.0.0" true "76643195-2ba3-4574-8fd0-084cc51251aa"

The output indicates that the fractal add-on is available and is also installed on the client machine.

Input Arguments

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which an add-on is installed, specified as a
character vector or string scalar.

Example: '144.213.5.7"'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which an add-on is installed, specified as
a positive scalar.

Example: 9920

Data Types: uint8 | uint16

tf — Flag to set URI scheme
false (default) | true

Flag that sets the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set tf or if you set tf to false, the function uses http. If you set tf to
true, the function uses https.

9 MATLAB Client Functions

9-8

Example: true

Data Types: logical

Output Arguments

addons — List of available MATLAB Production Server add-ons
table

List of available MATLAB Production Server add-ons on a server instance, specified as a table. If
multiple add-ons are available, each add-on is listed in a separate row. Each row has the following
columns:

Name — Name of the available add-on.
Release — Version of MATLAB used to create the add-on.
Version — Author-specified version of the add-on.

Installed — Boolean indicating whether the add-on is installed on the client machine. If true,
the add-on is installed. If false, the add-on is not installed.

Identifier — String uniquely identifying the add-on. For more information, see
prodserver.addon.install.

Host — Host name of the server that makes the add-on available.
Port — Port number of the server that makes the add-on available.

Version History
Introduced in R2019b

See Also
prodserver.addon.install | prodserver.addon.uninstall |
prodserver.addon.installFolder | prodserver.addon.isInstalled

prodserver.addon.Explorer

prodserver.addon.Explorer

Launch MATLAB Production Server Add-On Explorer app

Syntax

prodserver.addon.Explorer

Description
This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.Explorer opens the MATLAB Production Server Add-On Explorer app.
The MATLAB Production Server Add-On Explorer app lets you add server instances that your
MATLAB session can communicate with, and lets you browse, install, and uninstall MATLAB
Production Server add-ons that communicate with the servers.

Examples

Open MATLAB Production Server Add-On Explorer app

Open the MATLAB Production Server Add-On Explorer app.

prodserver.addon.Explorer

Version History
Introduced in R2019b

See Also
prodserver.addon.install | prodserver.addon.uninstall

Topics
“Execute Deployed MATLAB Functions” on page 8-5

9-9

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

9 MATLAB Client Functions

9-10

prodserver.addon.get

Get value of MATLAB Production Server add-on property

Syntax

value
props

prodserver.addon.get(name)
prodserver.addon.get

Description
This function requires MATLAB Client for MATLAB Production Server.

value = prodserver.addon.get(name) returns the value of the MATLAB Production Server
add-on property specified by name.

props = prodserver.addon.get returns the values of all MATLAB Production Server add-on
properties.

Examples

Determine if HTTPS is Used for Client-Sever Communication

Get the value of the TransportLayerSecurity property.
tls = prodserver.addon.get('TransportLayerSecurity"')
tls =

logical

0

The output indicates that the client does not use HTTPS for client-server communication.

Get Values of All Properties

Get values of all MATLAB Production Server add-on properties.

props prodserver.addon.get

props
struct with fields:

TransportLayerSecurity: 1
CertificateFile: [1x0 string]

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.get

The TransportLayerSecurity field in the output indicates that the client uses HTTPS for client-
server communication.

Input Arguments

name — Name of MATLAB Production Server add-on property
character vector | scalar

Name of the MATLAB Production Server add-on property, specified as a character vector or scalar.
You can specify only valid property names. Valid property names are:

* TransportLayerSecurity
* CertificateFile

Example: 'TransportLayerSecurity'

Data Types: char | string

Output Arguments

value — Value of add-on property
character vector | string

Value of the MATLAB Production Server add-on property, returned as a character vector or string.

props — Values of all add-on properties
structure

Values of all MATLAB Production Server add-on properties, returned as a structure. The structure
contains the following fields:

* TransportLayerSecurity — Boolean that indicates whether the client uses HTTPS.

* CertificateFile — Path to the SSL certificate of the server. For more information, see “Save
SSL Certificate of Server” on page 8-17.

Version History
Introduced in R2020a

See Also
prodserver.addon.set

External Websites
“Execute MATLAB Functions Using HTTPS”

9-11

9 MATLAB Client Functions

9-12

prodserver.addon.install

Install MATLAB Production Server add-on from server

Syntax

prodserver.addon.install(name, host,port)
prodserver.addon.install(name,host,port, 'TransportLayerSecurity', tf)
prodserver.addon.install(name, endpoint)

info = prodserver.addon.install()

Description

prodserver.addon.install(name,host, port) installs the MATLAB Production Server add-on
name from a MATLAB Production Server instance running at host and port.

You can install multiple add-ons that have the same name but are hosted on different servers. The
proxy functions that the add-ons create appear on the MATLAB search path. When you call a proxy
function, the function with the same name that appears nearest to the top of the MATLAB search path
is invoked. For more information about the MATLAB search path, see “What Is the MATLAB Search
Path?” (MATLAB).

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.install(name,host,port, 'TransportLayerSecurity', tf) additionally
lets you specify the URI scheme (HTTP or HTTPS) of the sever.

prodserver.addon.install(name,endpoint) lets you specify the network address for the
active server instance from which you can install add-ons.

info = prodserver.addon.install() additionally returns information about the installed

add-on using any of the input arguments in previous syntaxes.

Examples

Install Add-On Using Host Name and Port of Server
Install a MATLAB Production Server add-on using the default http scheme.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy
Archive to MATLAB Production Server”.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142,
prodserver.addon.install('fractal','10.2.2.5"',57142)

ans =

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.install

1x5 table

Name Version Enabled Identifier

"fractal (R2020b)" "1.0.0" true "599ce38c-eeal-4011-85b9-8d301b4d5375"

Install Add-On Using Network Address of Server
Install a MATLAB Production Server add-on using the network address of the server.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy
Archive to MATLAB Production Server”.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142.
prodserver.addon.install('fractal', 'http://10.2.2.5:57142")
ans =

1x5 table

Name Version Enabled Identifier

"fractal (R2020b)" "1.0.0" true "599ce38c-eeal-4011-85b9-8d301b4d5375"

Install Add-On Using HTTPS
Use HTTPS for client-server communication when installing an add-on.

First, enable HTTPS on a MATLAB Production Server instance. For more information, see “Enable
HTTPS”.

Host a deployable archive fractal on the server instance. You must include a MATLAB function
signature file when you create the archive. You must enable the discovery service on the server
instance that hosts the archive. For information on how to create and deploy the archive, see “Create
Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy Archive to MATLAB
Production Server”.

Install the fractal add-on from a server running at https://10.2.2.5:57142.
prodserver.addon.install('fractal','10.2.2.5"',57143, 'TransportlLayerSecurity',true)
ans =

1x5 table

Name Version Enabled Identifier

"http:,

"http:,

9-13

9 MATLAB Client Functions

9-14

"fractal (R2020b)" "1.0.0" true "599ce38c-eeal-4011-85b9-8d301b4d5375"

Get Add-On Information After Installing Add-On
Install an add-on and obtain information about the installed add-on.

First, host a deployable archive fractal on a MATLAB Production Server instance. You must include
a MATLAB function signature file when you create the archive. You must enable the discovery service
on the server instance that hosts the archive. For information on how to create and deploy the
archive, see “Create Deployable Archive for MATLAB Production Server” on page 1-2 and “Deploy
Archive to MATLAB Production Server”.

Save information to a table info when installing the fractal add-on from a server running at IP
address 10.2.2.5 and port 57142.

info = prodserver.addon.install('fractal','10.2.2.5"',57142)
info =
1x5 table

Name Version Enabled Identifier

"https

"fractal (R2020b)" “1.0.0" true "599ce38c-eeal-4011-85b9-8d301b4d5375"

The table info contains information about the installed add-on fractal.

Input Arguments

name — Name of MATLAB Production Server add-on
character vector | string scalar

Name of the MATLAB Production Server add-on to install from a server, specified as a character
vector or string scalar.

Example: 'fractal'

Data Types: char | string

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host name of server:port number.

Example: 'https://144.213.5.7:9920"
Data Types: char | string

host — Host name of server
character vector | string scalar

"http:,

prodserver.addon.install

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.

Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.

Example: 9920

Data Types: uint8 | uint16

tf — Flag to set URI scheme
false (default) | true

Flag that sets the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set tf or if you set tf to false, the function uses http. If you set tf to
true, the function uses https.

Example: true

Data Types: logical

Output Arguments

info — Information about installed add-on
table

Information about the installed add-on, returned as a table. The table contains the following columns:

* Name — Name of the installed add-on

* Version — Version of the installed add-on

* Enabled — Boolean indicating whether the add-on is available
¢ Identifier — String uniquely identifying the add-on

* Endpoint — Network address of the server hosting the add-on in the format scheme://
server_host name:port number

Version History
Introduced in R2019b

See Also
prodserver.addon.uninstall | prodserver.addon.isInstalled |
prodserver.addon.installFolder | prodserver.addon.availableAddOns

Topics

“Execute Deployed MATLAB Functions” on page 8-5
“Connect MATLAB Session to MATLAB Production Server” on page 8-2

9-15

9 MATLAB Client Functions

prodserver.addon.installFolder

Path to installation folder of MATLAB Production Server add-on

Syntax

path = prodserver.addon.installFolder(name,host,port)
path = prodserver.addon.installFolder(name, host,
port, 'TransportLayerSecurity', tf)

path = prodserver.addon.installFolder(name,endpoint)

Description

path = prodserver.addon.installFolder(name,host,port) returns the full path to the
folder on a local machine where a MATLAB Production Server add-on is installed. If the add-on is not
present on the local machine, the function returns an empty string. The server does not have to be
active for the function to return the path to the installation folder.

This function requires MATLAB Client for MATLAB Production Server.
path = prodserver.addon.installFolder(name, host,
port, 'TransportlLayerSecurity', tf) additionally specifies a URI scheme (HTTP or HTTPS)

when specifying the server address.

path = prodserver.addon.installFolder(name,endpoint) specifies a network address
endpoint for the server instance.

Examples

Get Install Location of Add-On
Get the full path to an installed add-on from a server that uses the default HTTP scheme.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142. Get the path
to the fractal add-on.

path

prodserver.addon.installFolder('fractal','10.2.2.5"',57142)

path

"C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal Hosted by MATI

Get Install Location of Add-On Installed from Server Using HTTPS

Get the full path to an installed add-on from a server that uses the HTTPS scheme.

Install the fractal add-on from a server using HTTPS, and running at IP address 10.2.2.5 and port
57144. Get the path to the fractal add-on.

9-16

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

prodserver.addon.installFolder

path

prodserver.addon.installFolder('fractal','10.2.2.5"',57144, 'TransportLayerSecurity"',true)
path =

"C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal Hosted by MATI

Get Install Location of Add-On Using Network Address of Server

Get the full path to an installed add-on by specifying the network address of the server from which it
was installed.

Install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142.

Get the path to the fractal add-on.
path = prodserver.addon.installFolder('fractal', 'http://10.2.2.5:57142")
path =

"C:\Users\username\AppData\Roaming\MathWorks\MATLAB Add-Ons\Toolboxes\fractal Hosted by MATI

Input Arguments

name — Name of MATLAB Production Server add-on

character vector | string scalar

Name of the MATLAB Production Server add-on, specified as a character vector or string scalar.
Example: 'fractal'

Data Types: char | string

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.

Example: '144.213.5.7"

Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.

Example: 9920
Data Types: uint8 | uint16

endpoint — Network address of server
character vector | string scalar

9-17

9 MATLAB Client Functions

9-18

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host name of server:port number.

Example: 'https://144.213.5.7:9920'
Data Types: char | string

tf — Flag to set URI scheme
false (default) | true

Flag to set the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set tf or if you set tf to false, the function uses HTTP. If you set tf to
true, the function uses HTTPS.

Example: true

Data Types: logical

Version History
Introduced in R2020b

See Also

prodserver.addon.install | prodserver.addon.isInstalled |
prodserver.addon.availableAddOns

prodserver.addon.isAddOnFcn

prodserver.addon.isAddOnFcn

Determine if function is installed as part of MATLAB Production Server add-on

Syntax

tf = prodserver.addon.isAddOnFcn(fcn)
[tf,name] = prodserver.addon.isAddOnFcn(fcn)

Description

tf = prodserver.addon.isAddOnFcn(fcn) returns logical 1 (true) if the function fcn is
present on the MATLAB path and originates in a folder that belongs to a MATLAB Production Server
add-on. Otherwise, the function returns logical 0 (false). The function returns false if the add-on
containing fcn is disabled or not installed, because disabling an add-on removes its functions from
the MATLAB path.

This function requires MATLAB Client for MATLAB Production Server.
[tf,name] = prodserver.addon.isAddOnFcn(fcn) additionally returns the name of the add-on

that contains the function fcn. If the add-on containing fcn is disabled or not installed, the function
returns an empty string.

Examples

Find If Function Is Installed on Client Machine

Check if the function mandelbrot is installed on the client machine as part of an add-on.
tf = prodserver.addon.isAddonFcn('mandelbrot')
tf =

logical

0

The output indicates that the function mandelbrot is not installed as a part of any add-on on the
client machine.

Find Name of Add-On That Contains Function
Find which add-on contains a particular function.
Consider a deployable archive fractal that you host on the server instance. For more information

on how to create and deploy an archive, see “Create Deployable Archive for MATLAB Production
Server” on page 1-2 and “Deploy Archive to MATLAB Production Server”.

9-19

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

9 MATLAB Client Functions

9-20

After you install the fractal add-on from the server instance, check if the function mandelbrot is
present in the add-on.

[tf,name] = prodserver.addon.isAddonFcn('mandelbrot')
tf =
logical
1
name =

"fractal"

The output indicates that the function mandelbrot is installed on the client machine as part of the
fractal add-on.

Input Arguments

fcn — Name of function

character vector | string scalar

Name of the function, specified as a character vector or string scalar.
Example: 'mandelbrot’

Data Types: char | string

Output Arguments

tf — Value that indicates if function is installed as part of add-on
logical scalar

Value that indicates if the function is installed as part of an add-on, specified as a character vector or
string scalar.

name — Name of add-on that contains function
character vector | string scalar

Name of the add-on that contains the function, specified as a character vector or string scalar. If the
add-on containing the function is disabled or not installed, the function returns an empty string.

Version History
Introduced in R2020b

See Also
prodserver.addon.install | prodserver.addon.uninstall |
prodserver.addon.availableAddOns | prodserver.addon.isInstalled

prodserver.addon.isinstalled

prodserver.addon.isinstalled

Determine if MATLAB Production Server add-on is installed from server instance

Syntax

tf = prodserver.addon.isInstalled(name,host,port)

tf = prodserver.addon.isInstalled(name,host,port, 'TransportLayerSecurity',
setsecurity)

tf = prodserver.addon.isInstalled(name,endpoint)

[tf,tls] = prodserver.addon.isInstalled()

Description

tf = prodserver.addon.isInstalled(name,host,port) returnslogical 1 (true) if a MATLAB
Production Server add-on name is installed from a server instance whose address is specified by host
and port, and returns logical 0 (false) otherwise.

The server instance does not need to be active when you run this function.
This function requires MATLAB Client for MATLAB Production Server.

tf = prodserver.addon.isInstalled(name,host,port, 'TransportLayerSecurity',
setsecurity) additionally specifies a URI scheme (HTTP or HTTPS) for the server address.

tf = prodserver.addon.isInstalled(name,endpoint) specifies a network address for the
server instance.

[tf,tls] = prodserver.addon.isInstalled() additionally returns the value of the
TransportLayerSecurity property using any of the input arguments in the previous syntaxes.

Examples

Determine If Add-On Is Installed by Specifying Host and Port of Server

After you install the fractal add-on from a server running at IP address 10.2.2.5 and port 57140,
check if the add-on is installed from the server.

tf = prodserver.addon.isInstalled('fractal','10.2.2.5",'57140")

tf =
logical
1

The output indicates that the fractal add-on is installed from the server specified by IP address
10.2.2.5 and port number 57140.

9-21

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

9 MATLAB Client Functions

Determine If Add-On Is Installed From Server Using HTTPS

After you install the fractal add-on from a server using HTTPS and running at IP address 10.2.2.5
and port 57140, check if the add-on is installed from the server.

tf = prodserver.addon.isInstalled('fractal',6'10.2.2.5",'57142", 'TransportLayerSecurity',true)

tf =
logical
1

The output indicates that the fractal add-on is installed from the server specified by IP address
10.2.2.5 and port number 57142.

Determine If Add-On Is Installed and if Server Uses HTTPS

After you install the fractal add-on from a server running at IP address 10.2.2.5 and port 57140,
check if the add-on is installed from the server. Additionally, check if the server uses HTTPS.

[tf,tls] = prodserver.addon.isInstalled('fractal', 'http://10.2.2.5:57140")

tf =
logical

1

tls =
logical
0

The output indicates that the fractal add-on is installed from the specified server and the scheme is
HTTP.

Input Arguments

name — Name of MATLAB Production Server add-on
character vector | string scalar

Name of the MATLAB Production Server add-on, specified as a character vector or string scalar.
Example: 'fractal'

Data Types: char | string

host — Host name of server
character vector | string scalar

9-22

prodserver.addon.isinstalled

Host name of the server hosting a deployable archive from which you can install add-ons, specified as
a character vector or string scalar.

Example: '144.213.5.7'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which you can install add-ons, specified
as a positive scalar.

Example: 9920

Data Types: uint8 | unint16

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which you can install add-ons,
specified as a character vector or string scalar. The network address has the format scheme://
host name of server:port number.

Example: 'https://144.213.5.7:9920"
Data Types: char | string

setsecurity — Flag that sets URI scheme
false (default) | true

Flag that sets the URI scheme that the add-on uses when communicating with a server, specified as a
logical scalar. If you do not set setsecurity orif you set setsecurity to false, the scheme is
HTTP. If you set setsecurity to true, the scheme is HTTPS.

Example: 'TransportlLayerSecurity', true

Data Types: logical

Output Arguments

tf — Value that indicates whether function is installed
logical scalar

Value that indicates whether the function is installed, returned as a logical scalar.

t1ls — Value of TransportLayerSecurity property
logical scalar

Value of the TransportLayerSecurity property, returned as a logical scalar. If the value of

TransportLayerSecurity islogical 1 (true), the client-server communication uses HTTPS;
otherwise, it uses HTTP.

Version History
Introduced in R2019b

9-23

9 MATLAB Client Functions

See Also
prodserver.addon.install | prodserver.addon.isAddOnFcn | prodserver.addon.set |
prodserver.addon.availableAddOns | prodserver.addon.installFolder

9-24

prodserver.addon.set

prodserver.addon.set

Set value of MATLAB Production Server add-on property

Syntax
prodserver.addon.set('TransportLayersecurity', tf)

prodserver.addon.set('CertificateFile"',path)
prodserver.addon.set('TransportLayersecurity',tf, 'CertificateFile’',path)

Description

prodserver.addon.set('TransportLayersecurity', tf) sets the client-server communication
to use HTTPS or HTTP by setting the value of the TransportLayerSecurity property. If the value
of tf is true, the client-server communication uses HTTPS; otherwise, it uses HTTP.

This function requires MATLAB Client for MATLAB Production Server.
prodserver.addon.set('CertificateFile', path) sets the path to the SSL certificate of the
server that is saved on the client machine by setting the CertificateFile property. You might need
to set the path if you save the self-signed SSL certificate of the server locally or for other testing
purposes.

prodserver.addon.set('TransportLayersecurity',tf, 'CertificateFile',path) lets
you set the TransportlLayersecurity and CertificateFile properties at the same time.

Examples

Use HTTPS for Client-Server Communication

Use HTTPS when communicating with server instances by setting the TransportLayerSecurity
property to true.

prodserver.addon.set('TransportLayerSecurity',true)

This setting persists across MATLAB sessions.

Set Path to Self-Signed Server Certificate

Before your client can communicate with a server that uses a self-signed SSL certificate, you must
save the server certificate locally. For more information, see “Save SSL Certificate of Server” on page
8-17.

Then, set the path to the server certificate that you saved.

prodserver.addon.set('CertificateFile', 'C:\server cert.pem')

9-25

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

9 MATLAB Client Functions

This setting persists across MATLAB sessions.

Version History
Introduced in R2020a

See Also
prodserver.addon.get

Topics
“Execute MATLAB Functions Using HTTPS”

9-26

prodserver.addon.uninstall

prodserver.addon.uninstall

Uninstall MATLAB Production Server add-on

Syntax

prodserver.addon.uninstall
prodserver.addon.uninstall
prodserver.addon.uninstall
prodserver.addon.uninstall

name, host,port)

name, host,port, 'TransportLayerSecurity', tf)
name, endpoint)

identifier)

—_— o~ o~ o~

Description

prodserver.addon.uninstall(name,host,port) uninstalls a MATLAB Production Server add-
on that is installed from a server whose address is specified by host and port.

Uninstalling a MATLAB Production Server add-on removes the add-on, including all functions,
examples, and documentation available in the add-on. Uninstalling a MATLAB Production Server add-
on does not modify or remove any code that calls the functions available in the add-on. The server
instance is not required to be running for the add-on to be uninstalled.

This function requires MATLAB Client for MATLAB Production Server.

prodserver.addon.uninstall(name,host,port, 'TransportLayerSecurity', tf)
additionally allows you to specify the URI scheme (HTTP or HTTPS) that the server uses.

prodserver.addon.uninstall(name,endpoint) lets you specify a network address to identify
the server.

prodserver.addon.uninstall(identifier) uninstalls the add-on specified by identifier.

Examples

Uninstall Add-On Using Add-On Name, and Server Host Name and Port

Uninstall a MATLAB Production Server add-on using the add-on name, and the host name and port
number of the server from which the add-on was installed.

First, install the fractal add-on from a server running at IP address 10.2.2.5 and port 57142. For
more information, see prodserver.addon.install.

Use the name of the add-on, and the IP address and port number of the server from which it was
installed to uninstall the add-on.

prodserver.addon.uninstall('fractal','10.2.2.5"',57142)

9-27

https://www.mathworks.com/matlabcentral/fileexchange/73232-matlab-client-for-matlab-production-server

9 MATLAB Client Functions

9-28

Specify HTTPS Scheme When Uninstalling Add-On

Uninstall a MATLAB Production Server add-on that uses HTTPS to communicate with a server by
using the host name and port number of the server from which it was installed.

First, install the fractal add-on from a server running at IP address 10.2.2.5 and port 57144, and
using the default HTTP scheme. For more information, see prodserver.addon.install.

To uninstall the add-on, specify the name of the add-on, and the host name and port number of the
server from which the add-on was installed. Also, specify the HTTPS scheme by setting the
TransportLayerSecurity property to true.

prodserver.addon.uninstall('fractal','10.2.2.5',57144, 'TransportLayerSecurity',true)

Uninstall Add-On Using Add-On Name and Network Address of Server

Uninstall a MATLAB Production Server add-on using the add-on name and network address of the
server from which it was installed.

First, install the fractal add-on from a server running at http://10.2.2.5:57142. For more
information, see prodserver.addon.install.

Use the name of the add-on and the network address of the server from which it was installed to
uninstall the add-on.

prodserver.addon.uninstall('fractal', 'http://10.2.2.5:57142")

Uninstall Add-On Using Unique Identifier

Uninstall a MATLAB Production Server add-on using its unique identifier.

First, install a MATLAB Production Server add-on fractal using prodserver.addon.install.
prodserver.addon.install returns an identifier that uniquely identifies the add-on.

Use the unique identifier to uninstall the add-on.

prodserver.addon.uninstall('3c192cbd-95dc-4263-a722-6d594b%ael2c")

Input Arguments

identifier — String uniquely identifying the add-on
character vector | string scalar

String uniquely identifying the add-on, specified as a character vector or string scalar.
Example: '3c192cbd-95dc-4263-a722-6d594b9%ael2c"
Data Types: char | string

name — Name of MATLAB Production Server add-on
character vector | string scalar

prodserver.addon.uninstall

Name of the MATLAB Production Server add-on to uninstall, specified as a character vector or string
scalar.

Example: 'fractal'

Data Types: char | string

endpoint — Network address of server
character vector | string scalar

Network address of the server hosting a deployable archive from which the add-on is installed,
specified as a character vector or string scalar. The network address has the format scheme://
host name of server:port number.

Example: 'https://localhost:9910"
Data Types: char | string

host — Host name of server
character vector | string scalar

Host name of the server hosting a deployable archive from which the add-on is installed, specified as
a character vector or string scalar.

Example: '144.213.5.7"'
Data Types: char | string

port — Port number of server
positive scalar

Port number of the server hosting a deployable archive from which the add-on is installed, specified
as a positive scalar.

Example: 9920
Data Types: uint8 | uint16

tf — Flag to determine URI scheme
false (default) | true

Flag that determines the URI scheme that the server uses, specified as a logical scalar.

* true — The add-on uses HTTPS.
 false — The add-on uses HTTP.

Example: 'TransportLayerSecurity', true

Data Types: logical

Version History
Introduced in R2019b

See Also
prodserver.addon.install

9-29

Streaming Functions

10 Streaming Functions

10-2

categorylList
Package: matlab.io.stream.event

Kafka stream provider property list

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

list = categoryList(ks,cat)

Description

list = categoryList(ks,cat) returns the names and categories of all the Kafka® stream
provider properties and their respective values from the categories cat for the object ks.

The returned list is a cell array of alternating structures and values of the form
{name sctructl,valuel,...,name structN,valueN}, where:

* name_struct is a structure with fields "category" and "name". These fields define the
category name and property name, respectively.

* value contains the value of the property named in the preceding structure. value can be of any
type.

Examples

List Kafka Provider Properties and Values from Specific Category

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify security properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol","SSL",
"ssl.truststore.type", "PEM",
"ssl.truststore.location", "kafka-boston.pem");

Get the names, categories, and values of the two Kafka provider properties in the "Uncategorized"
category.

* Property ssl.truststore.location has a value of "kafka-boston.pem"
* Property ssl.truststore.type has a value of "PEM"
list = categoryList(ks, "Uncategorized")

propl list{1}
prop2 list{3}

categorylList

list =
1x4 cell array

{1x1 struct} {["kafka-boston.pem"]}

propl =
struct with fields:

'ssl.truststore.location'
'"Uncategorized’

name:

category:
prop2 =

struct with fields:

'ssl.truststore.type'
"Uncategorized’

name:
category:

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

{1x1 struct} {["PEM"]}

Object connected to a Kafka stream topic, specified as a KafkaStream object.

cat — Kafka stream provider category name

string scalar | character vector | string array | cell array of character vectors

Kafka stream provider category name, specified as a string scalar, character vector, string array, or
cell array of character vectors. This table shows the categories that Streaming Data Framework for
MATLAB Production Server supports. Properties can belong to more than one category.

Category

Description

Uncategorized

Contains all Kafka provider properties that do not
fall into any other category

Kafka Property Example:
ssl.truststore.pem

Consumer

Contains provider properties specific to a Kafka
consumer

Kafka Property Example:
security.protocol

ConsumerTopic

Contains provider properties specific to reading a
topic

10-3

10 Streaming Functions

10-4

Category

Description

Producer

Contains provider properties specific to a Kafka
producer

Kafka Property Example:
security.protocol

ProducerTopic

Contains provider properties specific to writing to
a Kafka topic

Kafka Property Example: max. request.size

CreateTopic

Contains provider properties specific to creating
a Kafka topic

Kafka Property Example: retention.ms

KafkaConnector

Contains provider properties for interacting with
the Kafka Connector interface. readtimetable
uses this interface when you set the Order
property to EventTime in a KafkaStream
object.

Kafka Property Example: sasl.jaas.config

librdkafka

Contains provider properties for interacting with
the Kafka interface librdkafka.
readtimetable uses this interface when you set
the Order property to IngestTime in a
KafkaStream object. writetimetable always
uses librdkafka.

Kafka Property Example: sasl.username

Example: categoryList (ks, ["WriteTopic" "CreateTopic"]) returns any provider properties
set in ks that are related to creating or writing a topic.

Data Types: char | string | cell

Version History
Introduced in R2022b

See Also
getProviderProperties | isProperty

Topics
“Connect to Secure Kafka Cluster” on page 11-9

createTopic

createTopic

Package: matlab.io.stream.event

Create topic in Kafka cluster

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

createTopic(ks)
createTopic(ks,MissingTopic=action)
Description

createTopic(ks) creates a topic on the Kafka host, if Kafka cluster permissions allow creation. The
KafkaStream object ks specifies the topic to create and the network address of the Kafka host that
contains the topic.

createTopic(ks,MissingTopic=action) specifies whether to create a topic Kafka or fail when
the topic is missing. If the Kafka cluster that you are writing to is configured to auto-create topics,
specifying action has no effect.

Examples

Create Topic in Kafka Cluster
Assume that you have a Kafka server running at network address kafka.host.com:9092.

Create an object connected to the Kafka host that interacts with a topic called CoolingFan.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan");

If the CoolingFan topic does not exist during object creation, you can create it. You must have the
necessary permissions to create topics.

createTopic(ks)

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

action — Action to take if topic does not exist
create (default) | fail

Action to take if the topic does not exist, specified as one of the following values:

10-5

10 Streaming Functions

* create — Creates new topic, if you have the required permissions on the Kafka host.
» fail — Does not create a new topic.

Data Types: char | string

Version History
Introduced in R2022b

See Also
readtimetable |writetimetable | detectImportOptions | deleteTopic | kafkaStream

10-6

deleteTopic

deleteTopic

Package: matlab.io.stream.event

Remove topic from Kafka cluster

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

deleteTopic(ks)

Description
deleteTopic(ks) removes a topic from a Kafka cluster, if Kafka permissions allow deletion. The
KafkaStream object ks specifies the topic to delete and the network address of the Kafka host that

contains the topic. This deletion is permanent. The deleted topic and the data it contains cannot be
recovered.

Examples

Delete Kafka Topic

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create an object connected to the CoolingFan topic.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan");

If you no longer require the topic and the data in it, you can delete it. You must have the necessary
permissions to delete topics.

deleteTopic(ks)

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

Version History
Introduced in R2022b

10-7

10 Streaming Functions

See Also
createTopic | readtimetable | detectImportOptions | kafkaStream

10-8

detectExportOptions

detectExportOptions

Package: matlab.io.stream.event

Create export options based on event stream content

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

detectExportOptions(stream, row)
detectExportOptions(stream, row, Format=format)

opts
opts

Description

opts = detectExportOptions(stream, row) detects export options from an event stream and
returns them in opts. These options specify the rules for transforming MATLAB variables into
streaming data. To determine which streaming data type best matches the type of each column
variable, detectExportOptions examines a row of timetable data and includes the type
information in opts.

To get and set the types of the variables as they are exported from MATLAB to the stream, use
getvartype and setvartype.

To export data from MATLAB to a stream, use writetimetable.

opts = detectExportOptions(stream, row,Format=format) optionally sets the output stream
format.

Examples

Detect Data Export Options from Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic Triangles.

Create a KafkaStream object connected to the Triangles topic.
inKS = kafkaStream("kafka.host.com",9092,"Triangles");

Read events from the Triangles topic into a timetable. Preview the data by viewing the first row.
The a, b, and c triangle side lengths are stored as strings.

tt = readtimetable(inKS);
row = tt(1,:)

row =

1x3 timetable

10-9

10 Streaming Functions

timestamp a b C

03-Sep-2022 "15" “31" “36"

Use detectExportOptions to generate an ExportOptions object from the Kafka stream object.
The function obtains the types used to export the variables from the first row of the timetable.

opts = detectExportOptions(inKS, row);

Use getvartype to confirm that the side length variables are currently exported to the stream as
strings.

type = getvartype(opts,["a" "b" "c"]);
type =
1x3 string array
"string" "string" "string"

Update the export options so that the side lengths are exported as double values. Confirm the
updated options by using getvartype.

opts = setvartype(opts,["a","b","c"], " "double");

[name, type] = getvartype(opts);
fprintf("%s: %s\n", [name; type])

a: double
b: double
c: double

Connect to the stream to export data to numericTriangles.

outKS = kafkaStream("kafka.host.com",9092, "numericTriangles",
ExportOptions=opts)

outKS =
KafkaStream with properties:

Topic: "numericTriangles”
Group: "85c42e39-695d-467a-86f0-f0095792e7de"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "None"
ExportOptions: "Source: string"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl1l6"

KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"

BodyFormat: "JSON"

detectExportOptions

ReadLimit: "Size"
TimestampResolution: "Milliseconds"

Export the timetable to the new stream. The triangle side lengths in this stream are of type double.

writetimetable(outKS,tt);

Input Arguments

stream — Object connected to event stream
KafkaStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream or TestStream object.

row — Row of MATLAB timetable data
timetable

Row of MATLAB timetable data. row must be an example of the data that you intend to write to the
stream. detectExportOptions uses the columns of this row to set the variable names and types in
the export options.

Example: tt(1, :) extracts the first row of data from timetable tt.

format — Format of output stream
"Event" (default) | "InfluxDB"

Format of the output stream, specified as one of these options:

« "Event" — Native, default even stream format
* "InfluxDB" — Format specifically used by InfluxDB

Data Types: char | string

Output Arguments

opts — Event stream export options
ExportOptions object

Event stream export options, returned as an ExportOptions object.

Version History
Introduced in R2022b

See Also
ExportOptions | detectImportOptions | setvartype | getvartype

10-11

https://www.influxdata.com/

10 Streaming Functions

10-12

detectimportOptions

Package: matlab.io.stream.event

Create import options based on event stream content

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

detectImportOptions(stream)
detectImportOptions(stream,Event=e)

opts
opts

Description

opts = detectImportOptions(stream) obtains the event schema from an event stream and
based on that schema, returns data import options in the ImportOptions object opts. The schema
includes the names and data types of variables in the event body.

You can modify opts later and use it with readtimetable to control how MATLAB imports stream
events into MATLAB timetables.

opts = detectImportOptions(stream,Event=e) analyzes the event structure array e to
determine the event schema. Use this syntax only if the event stream that st ream connects to is
unavailable. You can either manually create this array, which can be complex, or use one that was
previously obtained from the stream, such as from a call to the readevents function.

Examples

Detect Import Options from Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic Triangles. Each event has one data column, "triangle", which contains a structure
with three fields, "x", "y", "z", containing the integer side lengths of a triangle.

Create a KafkaStream object connected to the Triangles topic.
ks = kafkaStream("kafka.host.com",9092,"Triangles");

Create an ImportOptions object from the Kafka stream object. The data type of the length of each
side is string.

opts = detectImportOptions(ks)
opts =

ImportOptions with properties:

VariableNames: ["triangle/x" "triangle/y" "triangle/z"
VariableTypes: ["string" "string" "string"]
KeyVariable: "key"
SelectedVariableNames: ["triangle/x" "triangle/y" "triangle/z"

detectimportOptions

To perform mathematical operations on the imported data, update the data type of variables to
double. Because the side length variables are nested within "triangle", use a forward slash ("/")
to specify the path to these variables.

opts = setvartype(opts, ["triangle/x", "triangle/y", "triangle/z"], "double")
opts =

ImportOptions with properties:

VariableNames: ["triangle/x" "triangle/y" "triangle/z"
VariableTypes: ["double" "double" "double"]
KeyVariable: "key"
SelectedVariableNames: ["triangle/x" "triangle/y" "triangle/z"

Update the ImportOptions property of the KafkaStream object.
ks.ImportOptions = opts
ks =

KafkaStream with properties:

Topic: "Triangles"
Group: "85c42e39-695d-467a-86f0-f0095792e7de"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "Import to MATLAB types"
ExportOptions: "Source: function eventSchema"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl6"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"
BodyFormat: "JSON"
ReadLimit: "Size"
TimestampResolution: "Milliseconds"

When importing the triangles, readtimetable converts the side lengths to double values.

tt = readtimetable(ks);
tt(1,:).triangle

ans =

struct with fields:

N < X
u b~ Ww

Input Arguments

stream — Object connected to event stream
KafkaStream object | TestStream object

10-13

10 Streaming Functions

10-14

Object connected to an event stream, specified as a KafkaStream or TestStream object.

e — Event information
structure array

Event information, specified as a structure array. This array is in the format returned by the
readevents function.

Each structure in the array has these fields.

key — Event key
string array | positive integer

Event key as stored in Kafka, returned as a string array or integer. The key identifies the event
source.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
char | string

value — Event value
byte array

Event value, specified as a byte array with a format and encoding determined by the BodyFormat
and BodyEncoding properties of the stream object. The event value does not undergo schema
processing and appears exactly as is stored in Kafka, for example, as a JSON string.

Data Types: string | uint8 | uint16

timestamp — Event timestamp or ingest timestamp
datetime scalar

Timestamp of event occurrence or timestamp of event ingestion in Kafka, specified as a datetime
scalar.

Data Types: datetime

Output Arguments

opts — Event stream import options
ImportOptions object

Event stream import options, returned as an ImportOptions object.

Version History
Introduced in R2022b

See Also
ImportOptions | eventStreamImportOptions | kafkaStream | testStream| setvartype |
detectExportOptions

eventStreamlmportOptions

eventStreamimportOptions

Create options for importing events from stream into MATLAB

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

opts = eventStreamImportOptions(VariableNames=names,VariableTypes=types)
opts = eventStreamImportOptions(KeyVariable=kv)

opts = eventStreamImportOptions(VariableNames=names,VariableTypes=

types,KeyVariable=kv)

Description

Use eventStreamImportOptions only when you are unable to detect import options from the
stream object using detectImportOptions.

opts = eventStreamImportOptions(VariableNames=names,VariableTypes=types) sets
the VariableNames and VariableTypes properties of the ImportOptions object opts. names
and types are the names and data types of event variables that you want to import from an event
stream into MATLAB.

opts = eventStreamImportOptions(KeyVariable=kv) sets the KeyVariable property of the
ImportOptions object opts.

opts = eventStreamImportOptions(VariableNames=names,VariableTypes=
types,KeyVariable=kv) sets the VariableNames, VariableTypes, andKeyVariable
properties.

Examples

Create Variable Import Options for Event Stream Data

Create a schema for importing data from an event stream into MATLAB by specifying variable names
and their data types to use during the import.

names
types

[IIXII , IISymbo'l-ll] ;
["double","string"];

Construct an ImportOptions object using this data import schema.

eventStreamImportOptions(VariableNames=names,VariableTypes=types)

opts
opts =
ImportOptions with properties:

VariableNames: ["x" "symbol"]
VariableTypes: ["double" "string"]

10-15

10 Streaming Functions

10-16

KeyVariable: [0x0 string]
SelectedVariableNames: ["x" "symbol"]

Apply the import options when creating a KafkaSt ream object.

ks = kafkaStream("kafka.host.com",9092,"Your Kafka Topic",ImportOptions=opts);

Import the data. The "Your Kafka Topic" topic must have events with exactly two variables, x and
symbol. In addition, the types of these variables must be convertible to double and string,
respectively. Otherwise, readtimetab’le throws an error.

tt = readtimetable(ks);

Input Arguments

names — Variable names
string scalar | string array | cell array of character vectors

Variable names to use when importing variables from the event stream into a timetable, specified as a
string scalar, string array, or cell array of character vectors.

Data Types: string | cell

types — Data type of variables
string scalar | string array | cell array of character vectors

Data type of variables to use when importing variables from the event stream into a timetable,
specified as a string scalar, string array, or cell array of character vectors containing a set of valid
data type names. The VariableTypes property designates the data types.

Data Types: string | cell

kv — Event key variable name
string scalar | character vector

Event key variable name to use when importing variables from the event stream into a timetable,
specified as a string scalar or character vector.

Data Types: string | char

Version History
Introduced in R2022b

See Also
detectImportOptions | setvartype

eventStreamProcessor

eventStreamProcessor

Apply stream analytic function to event stream

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description

Use an EventStreamProcessor object to apply a stream analytic function to an event stream.
Using EventStreamProcessor object functions, you can automatically direct events from an event
stream to a streaming analytic function, enabling you to process large amounts of data in event
streams.

You can run the streaming analytic function on a known number of event windows synchronously,
similar to a for-loop. You can also run it with a desktop-hosted server to simulate asynchronous
deployment in a production environment.

EventStreamProcessor functions can process streaming data sequentially in batches by collecting
events into windows of configurable size. When a window is full of the requested number of events,
the window of events is passed to the stream processing analytic function. You can then save any
results that the analytic function produces and optionally publish them to a different stream.

A stream processing function can be stateful or stateless. For stateful functions, the
EventStreamProcessor object maintains state between calls to the stream processing function. If
the stream processing function changes the state, the function can return the state as a second
output argument. The EventStreamProcessor object preserves these changes for the next function
iteration.

Creation

Syntax

esp = eventStreamProcessor(inputStream,streamFcn)

esp = eventStreamProcessor(inputStream,streamFcn,initialState)
esp = eventStreamProcessor (,Name=Value)
Description

esp = eventStreamProcessor(inputStream,streamFcn) creates an
EventStreamProcessor object, which applies the stream function streamFcn to the event stream
inputStream, and sets the InputStream and StreamFunction properties, respectively, of this
object.

esp = eventStreamProcessor(inputStream,streamFcn,initialState) creates an
EventStreamProcessor object that additionally initializes persistent state with the function
initialState and sets the InitialState property. If streamFcn is stateful, then initialState
is required.

10-17

10 Streaming Functions

esp = eventStreamProcessor(,Name=Value) sets object properties using one or more
name-value arguments. Name is a property name on page 10-18 and Value is the corresponding
value. You can specify multiple name-value arguments in any order as
Namel=Valuel,...,.NameN=ValueN.

Properties

ArchiveName — Name of generated deployable archive
string array

Name of the deployable archive generated by the package function, specified as a string. The default
archive name is the name of the streaming function.

Data Types: string

GroupVariable — Name of event variable used to group events
string array | character vector

Name of the event variable used to group events, specified as a string array or character vector.

If GroupVariab'le is nonempty, each event window is split into groups in which the event variables
have the same value. Each group is then sent to the streaming function separately. GroupVariable
is often set to the event key so that events from each event source are processed independently.

Data Types: string | char

InitialState — Function that creates initial state for streaming analytic function
function handle

Function that creates the initial state for the streaming analytic function, specified as a function
handle. If the streaming analytic function is stateful, this property must be set when you create the
object.

InputStream — Event stream from which the streaming analytic function reads events
KafkaStream object | InMemoryStream object | TestStream object

Event stream from which the streaming analytic function reads events, specified as a KafkaStream,
InMemoryStream, or TestStream object.

OutputStream — Event stream to which streaming analytic function writes events
InMemoryStream object (default) | KafkaStream object | TestStream object

Event stream to which the streaming analytic function writes events, specified as a KafkaStream,
InMemoryStream, or TestStream object.

Note If you are packaging your stream processing function into a deployable archive using the
package function, do not leave OutputStream set to an InMemoryStream object. This object is not
supported by the package function as an output stream.

StreamFunction — Streaming analytic function
function handle

Streaming analytic function, specified as a function handle.

10-18

eventStreamProcessor

Data Types: function handle

ReadPosition — Position in event stream to read from
"Beginning" | "End" | "Current"

Position in an event stream to read from, specified as one of these values:

* "Beginning" — First event available in stream
* "End" — Just past the last event in the stream
* "Current" — Just past the current event in the stream

Data Types: string

ResetStateOnSeek — Flag to clear persistent state after calling seek
true (default) | false

Flag to clear persistent state after calling the seek function, specified as a logical scalar.

Data Types: logical

Object Functions

execute Execute event stream processing function on specific number of event windows

package Package stream processing function into deployable archive configured by
EventStreamProcessor

seek Set position in event stream to begin processing events

start Start processing event streams using local test server

startServer Start local test server

stop Stop processing event streams using local test server

stopServer Shut down local test server

Examples

Iterate Streaming Analytic Function Over Several Event Windows

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Create an object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Assume that you have a streaming analytic function recamanSum and a function to initialize
persistent state called initRecamanSum.

Create an EventStreamProcessor object to run the recamanSum function and initializes persistent
state with the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum) ;
esp =

EventStreamProcessor with properties:

10-19

10 Streaming Functions

StreamFunction: @recamanSum
InputStream: [1x1 matlab.io.stream.event.KafkaStream]
OutputStream: [1x1 matlab.io.stream.event.InMemoryStream]
InitialState: @initRecamanSum

GroupVariable: [0x0 string]
ReadPosition: Beginning
ArchiveName: "recamanSum"

ResetStateOnSeek: 1

Iterate the streaming analytic function over the stream ten times.
execute(esp,10);
Examine the results.

result = readtimetable(esp.OutputStream)

Simulate Production Using Test Server

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a streaming analytic function recamanSum and a function
initRecamanSum to initialize persistent state.

Create a KafkaStream object connected to the RecamanSequence topic.

ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create another KafkaStream object to write the results of the streaming analytic function to a
different topic called RecamanSequenceResults.

outKS = kafkaStream("kafka.host.com",9092, "RecamanSequenceResults");

Create an EventStreamProcessor object that runs the recamanSum function and initializes
persistent state with the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum,QutputStream=outKS);

esp =
EventStreamProcessor with properties:

StreamFunction: @recamanSum
InputStream: [1x1 matlab.io.stream.event.KafkaStream]
OutputStream: [1x1 matlab.io.stream.event.KafkaStream]
InitialState: @initRecamanSum

GroupVariable: [0x0 string]
ReadPosition: Beginning
ArchiveName: "recamanSum"

ResetStateOnSeek: 1

Using the MATLAB editor, you can set breakpoints in the recamanSum function to examine the
incoming streaming data when you start the server.

Start the test server.

10-20

eventStreamProcessor

Note To use the test server, you require MATLAB Compiler SDK.

startServer(esp);

Doing so opens the Production Server Compiler app. When the app opens, you must start the
server manually.

To start the test server from the app, click Test Client, and then click Start. For an example on how
to use the app, see “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK).

Navigate back to the MATLAB command prompt to start processing events.
start(esp);
In the Production Server Compiler app, the test server receives data.

From the MATLAB editor, if you set breakpoints, you can use the debugger to examine the data, state,
and results of the function processing. Click Continue to continue debugging or Stop when you
finish debugging.

From the MATLAB command prompt, stop the server.
stop(esp);
Read results from the output stream.

results = readtimetable(outKS);

Version History
Introduced in R2022b

See Also
seek | streamingDataCompiler | execute | package | seek | start | startServer | stop |
stopServer

Topics

“Test Streaming Analytic Function Using Local Test Server” on page 11-12
“Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17

10-21

10 Streaming Functions

execute

Package: matlab.io.stream.event

Execute event stream processing function on specific number of event windows

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

execute(esp,n)

Description

execute(esp,n) runs the streaming processing function specified in the Name property of
processing object esp synchronously on n event windows.

The execute function starts processing event windows at the current read position of the stream.
Each event window is adjacent to the previous window, with no gaps between windows. To change the
starting position of the entire sequence, call seek before calling execute.

The first call to execute reads events from the position in the data stream where the read position
was when esp was constructed. On subsequent calls to execute, the read position is set to
Current. To change this behavior, call seek before execute.

Examples

Execute Event Stream Processing Function

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Create an object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com", 9092, "RecamanSequence");

Assume that you have a streaming analytic function recamanSum and a function to initialize
persistent state called initRecamanSum.

Create an EventStreamProcessor object that runs the recamanSum function and initializes
persistent state with the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum, @initRecamanSum);
esp =
EventStreamProcessor with properties:

StreamFunction: @recamanSum
InputStream: [1x1 matlab.io.stream.event.KafkaStream]

10-22

execute

OutputStream: [1x1 matlab.io.stream.event.InMemoryStream]
InitialState: @initRecamanSum
GroupVariable: [0x0 string]
ReadPosition: Beginning
ArchiveName: "recamanSum"
ResetStateOnSeek: 1
Iterate over the streaming analytic function ten times.
execute(esp,10);
Move the read position indicator to the beginning of the default output data stream.
seek(esp.OutputStream, "Beginning");

Examine the results.

result = readtimetable(esp.OutputStream)

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

n — Number of event windows
positive integer

Number of event windows, specified as a positive integer.

Version History
Introduced in R2022b

See Also
eventStreamProcessor | package | seek | start | startServer | stop | stopServer

Topics
“Process Kafka Events Using MATLAB” on page 11-5

10-23

10 Streaming Functions

ExportOptions

Export options for event stream

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description

An ExportOptions object specifies how MATLAB exports data from timetables to external event
streams, such as Kafka streams. The object contains properties that control the data export process,
including the transformation of event data to the specified type.

Creation

Create an ExportOptions object by using the detectExportOptions function. This function
detects and populates the export rules based on the configuration of the event stream specified by
stream and the variables in the timetable row specified by row.

opts = detectExportOptions(stream, row)
After creating opts, use setvartype to change the types of the variables as they are exported from
MATLAB to the stream. To export stream data, use the writetimetable function.

Properties

Scope — Scope of schema
“None" | "Event" | "Window" | "Stream"

Scope of the schema, specified as one of these options:

* "None" — Schema has no scope.

* "Event" — Schema applies to a single event.

* "Window" — Schema applies to all events in the window.

* "Stream" — Schema applies to all windows in the stream.

Use Scope to optimize how often to refresh the schema.

Data Types: string | char

Schema — Schema describing variables being exported
JSON-formatted text | function handle | Schema object

Schema describing the MATLAB variables being exported to the event stream, specified as one of
these values:

* JSON-formatted text (string or character vector)
* Function handle that evaluates to JSON-formatted text

10-24

ExportOptions

* Schema object that produces JSON-formatted text

This schema defines the rules for converting variables to the appropriate data type.

Example: '[{"name":"N", "type":"int64",6 "size":
[1,1],"missingValue":0,"categorical":false},
{"name":"X","type":"double", "size":
[1,1],"missingValue":"","categorical":false}]' describes a schema with two variables: N
(int64) and X (double).

Data Types: char | string | function handle

OutputLocation — Location of schema
"Event" | "Window"

Location of the schema, specified as one of these options:

* "Event" — Schema is embedded in a single event.
* "Window" — Schema is embedded in an event window.

Data Types: char | string

Format — Structure of text representation of schema
"Event" | "InfluxDB"

Structure of the text representation of the schema, specified as one of these options:

 "Event" — Native, default even stream format
+ "InfluxDB" — Format specifically used by InfluxDB

Data Types: char | string

Content — Content of schema stored in output location
"None" | "Literal” | "GeneratorFunction" | "RegistryID"

Content of the schema as it is stored in OutputLocation, specified as one of these options:

* "None" — No schema specified

* "Literal" — The literal schema (a struct or JSON text)

* "GeneratorFunction" — A function handle that generates the schema
* "RegistryID" — A string that identifies the schema

Data Types: char | string

Object Functions
setvartype Set data types used to import and export variables to stream

Examples
Create Export Options from Event Stream Data
Assume that you have a Kafka server running at the network address kafka.host.com:9092 that

has the topics Triangles and numericTriangles.

10-25

https://www.influxdata.com/

10 Streaming Functions

10-26

Create a KafkaStream object connected to the Triangles topic.

inKS = kafkaStream("kafka.host.com",9092,"Triangles");

Read events from the Triangles topic into a timetable. Preview the data by viewing the first row.
The a, b, and c triangle side lengths are stored as strings.

tt = readtimetable(inKS);
row tt(1,:)

row =
1x3 timetable

timestamp a b C

03-Sep-2022 "15" "31" "36"

Use detectExportOptions to generate an ExportOptions object from the Kafka stream object.
The function obtains the types used to export the variables from the first row of the timetable.

opts = detectExportOptions(inKS, row);

Use getvartype to confirm that the side length variables are currently exported to the stream as
strings.

ge‘tval"type(opts,["a" ||b|| "C"]);

type
type =
1x3 string array
"string" "string" "string"

Update the export options so that the side lengths are exported as double values. Confirm the
updated options by using getvartype.

opts = setvartype(opts,["a","b","c"],"double");

[name, type] = getvartype(opts);
fprintf("%ss: %s\n", [name; type])

a: double
b: double
c: double

Connect to the stream to export data to numericTriangles.

outKS = kafkaStream("kafka.host.com",9092, "numericTriangles",
ExportOptions=opts)

outKS =
KafkaStream with properties:
Topic: "numericTriangles"

Group: "85c42e39-695d-467a-86T0-f0095792e7de"
Order: EventTime

ExportOptions

Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "None"
ExportOptions: "Source: string"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl1l6"

KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"

BodyFormat: "JSON"
ReadLimit: "Size"

TimestampResolution: "Milliseconds"

Export the timetable to the new stream. The triangle side lengths in this stream are of type double.

writetimetable(outKS, tt);

Version History
Introduced in R2022b

See Also
ImportOptions | detectExportOptions |writetimetable

10-27

10 Streaming Functions

10-28

flush

Package: matlab.io.stream.event

Reset read window boundaries

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

flush(ks)

Description

flush(ks) resets the read window boundaries to enable reading of incomplete windows of data from
the Kafka stream ks.

Examples

Read Incomplete Window of Data

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Also assume that the CoolingFan topic has 5120 messages.

Create a KafkaStream object to connect to the Kafka host. Configure the object to read 500
messages, or events, at a time.

inKS = kafkaStream("kafka.host.com",9092,"CoolingFan",Rows=500);

Configure a second KafkaStream object to connect to the CoolingFanOut topic. The Kafka host
writes messages to this topic.

outKS = kafkaStream("kafka.host.com",9092,"CoolingFanOut",Rows=500);

Read 10 windows of message data from CoolingFan and write the data to CoolingFanOut. This
operation processes the first 5000 messages from CoolingFan.

for idx = 1:10
tt = readtimetable(inKS);
writetimetable(outKS, tt)
end

Read one more window of messages from CoolingFan. This topic has only 120 messages left to be
read. Because readtimetable does not receive a full window of 500 messages, it times out and does
not read the remaining messages.

tt = readtimetable(inKS)

flush

tt =
0x0 empty timetable

To enable reading the 120 remaining messages, flush the stream.

flush(inkS)

Read the remaining messages into a timetable and write them to CoolingFanOut. Though the
number of messages is smaller than the window size, readtimetable is able to read the remaining
messages.

tt = readtimetable(inKS);
writetimetable(outKS, tt)

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

Version History
Introduced in R2022b

See Also
readtimetable | seek |writetimetable

10-29

10 Streaming Functions

10-30

getProviderProperties

Package: matlab.io.stream.event

Kafka stream configuration property data

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

prop = getProviderProperties(ks)

prop = getProviderProperties(ks,name)

prop = getProviderProperties(,Category=cat)
[prop,val] = getProviderProperties()
Description

prop = getProviderProperties(ks) returns the names and categories of the Kafka stream
provider properties on page 10-33 in the structure array prop. The returned property names and
categories are the ones specified during the creation of the Kafka stream connector object ks.

prop = getProviderProperties(ks,name) returns only the properties with the provider
property names specified by name.

prop = getProviderProperties(,Category=cat) returns only the properties that belong
to the provider category cat, using either of the preceding syntaxes.

[prop,val] = getProviderProperties() alsoreturns a cell array of the values for each
returned property.

Examples

Get Provider Property Data

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol”,"SSL","ssl.truststore.type","PEM",

"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

Get the names and categories for all provider properties.

prop = getProviderProperties(ks)

prop

getProviderProperties

8x1 struct array with fields:

name
category

Display the property categories and names.
string({prop.category})' + "/" + string({prop.name})"
ans =

8x1 string array

"Consumer/auto.offset.reset"
"Consumer/security.protocol”
"CreateTopic/retention.ms"
"KafkaConnector/sasl.jaas.config"
"Producer/security.protocol”
"Uncategorized/ssl.truststore.location"
"Uncategorized/ssl.truststore.type"
"librdkafka/sasl.username"

Get Provider Properties by Name

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol","SSL","ssl.truststore.type", "PEM",
"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

Get the names and categories for two properties. Because the max.poll. records property is not
set in ks, the getProviderProperties function does not return data for that property.

prop getProviderProperties(ks,["max.poll.records" "retention.ms"])
prop =
struct with fields:

name: 'retention.ms'’
category: 'CreateTopic'

Get Provider Properties by Category

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

10-31

10 Streaming Functions

10-32

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol”,"SSL","ssl.truststore.type","PEM",

"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

Get data for the properties that belong to the CreateTopic category. This category includes only one
property.

prop = getProviderProperties(ks,Category="CreateTopic")
prop =
struct with fields:

name: 'retention.ms’
category: 'CreateTopic'

Get Provider Property Names and Values

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol”,"SSL","ssl.truststore.type","PEM",
"ssl.truststore.location", "kafka-boston.pem","retention.ms",500);

Display the categories, names, and values. The sasl. jaas.config property value fails to synthesize
because ks is missing a dependent property. Instead of returning a value for this property,
getProviderProperties returns an MException object describing this error.

[{"Category" "Name" "Value"};{prop.category}' {prop.name}' val']
ans =

3x3 cell array

{["Category" 1} {["Name" 1} {["Value" 1}
{'KafkaConnector'} {'sasl.jaas.config' } {1x1 MException}
{'Producer' } {'security.protocol'} {["SSL" 1}

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

name — Kafka stream provider property names
string scalar | character vector | string array | cell array of character vectors

Kafka stream provider property names, specified as a string scalar, character vector, string array, or
cell array of character vectors. If a property is not set in ks, than getProviderProperties does
not return a name and category for that property in prop or an optional corresponding value in val.

getProviderProperties

Example: [prop, val] = getProviderProperties(ks,"retention.ms") returns data for the
retention.ms property.

Data Types: char | string | cell

cat — Kafka stream provider category names
string scalar | character vector | string array | cell array of character vectors

Kafka stream provider category names, specified as a string scalar, character vector, string array, or
cell array of character vectors.

The specified categories must be present in ks. To get a list of valid categories, use the
ks.PropertyCategories property.
Data Types: char | string | cell

Output Arguments

prop — Kafka stream provider property names and categories
structure array

Kafka stream provider property names and categories, returned as a structure array. Each structure
corresponds to a provider property in ks and has these fields:

* name — Provider property name, returned as a string

* category — Category that the provider property belongs to, returned as a string

Because properties can belong to more than one category, the category and name uniquely identity a
property.

val — Kafka stream provider property values
cell array

Kafka stream provider property values, returned as a cell array of values for the property returned in
prop. If ks is missing a dependent property needed to derive a property value, then in place of that
value, getProviderProperties returns an MException object that describes the error.

More About

Stream Provider Properties

Stream providers such as Kafka have vendor-specific configuration properties that influence how the
stream provider operates on the stream. Some properties apply to a single type of operation, such as
topic creation, while other properties apply to multiple operations. Properties are grouped into
categories so that properties are sent only to the provider with operations that support them.
Because the same property can belong to multiple categories, each property is uniquely identified by
the combination of its name and category.

Version History
Introduced in R2022b

10-33

10 Streaming Functions

See Also
categorylList | isProperty

Topics
“Connect to Secure Kafka Cluster” on page 11-9

10-34

getvartype

getvartype

Package: matlab.io.stream.event

Data types used to export variables to stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

type = getvartype(opts)
[name, type] = getvartype(opts)
= getvartype(opts,selection)

Description

type = getvartype(opts) returns the data types of variables when they are exported to an event
stream using the export options specified by opts.

[name, type] = getvartype(opts) also returns the names of the variables.

= getvartype(opts,selection) returns the data types, and optionally the names, only for
the variables specified by selection.

Examples

Get Data Types of Exported Variables in Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has the topics Triangles and numericTriangles.

Create a KafkaStream object connected to the Triangles topic.
inKS = kafkaStream("kafka.host.com",9092,"Triangles");

Read events from the Triangles topic into a timetable. Preview the data by viewing the first row.
The a, b, and c triangle side lengths are stored as strings.

tt = readtimetable(inKS);
row = tt(1,:)

row =
1x3 timetable

timestamp a b C

03-Sep-2022 *15" “31" “36"

10-35

10 Streaming Functions

Use detectExportOptions to generate an ExportOptions object from the Kafka stream object.
The function obtains the types used to export the variables from the first row of the timetable.

opts =

detectExportOptions (inKS, row);

Use getvartype to confirm that the side length variables are currently exported to the stream as

strings.
type =
type =

1x3 string array

"string"

"string"

getvartype(opts, [uau ||b|| ||C||]);

"string"

Update the export options so that the side lengths are exported as double values. Confirm the
updated options by using getvartype.

opts =

setvartype(opts,["a","b","c"],"double");

[name, type] = getvartype(opts);

fprintf("%ss: %s\n",

a: double
b: double
c: double

[name; type])

Connect to the stream to export data to numericTriangles.

outKS = kafkaStream("kafka.host.com",9092, "numericTriangles",

ExportOptions=opts)

outKS =

KafkaStream with properties:

Topic:

Group:

Order:

Host:

Port:
ConnectionTimeout:
RequestTimeout:
ImportOptions:
ExportOptions:
PublishSchema:
WindowSize:
KeyVariable:
KeyEncoding:
KeyType:
KeyByteOrder:
BodyEncoding:
BodyFormat:
ReadLimit:
TimestampResolution:

"numericTriangles”
"85c42e39-695d-467a-86f0-f0095792e7de"
EventTime
"kafka.host.com"
9092

30

61

“None"

"Source: string"
“true"

50

1] keyll

"utfle”

“text"

"BigEndian"

"utf8"

"JSON"

"Size"
"Milliseconds"

Export the timetable to the new stream. The triangle side lengths in this stream are of type double.

10-36

getvartype

writetimetable(outKS,tt);

Input Arguments

opts — Event stream export options
ExportOptions object

Event stream export options, specified as an ExportOptions object.

selection — Selected variables
character vector | string scalar | cell array of character vectors | string array

Selected variables, specified as a character vector, string scalar, cell array of character vectors, or
string array.

Variable names must be a subset of the names recognized by the opts object.

Example: 'FanID'

Example: "FanID"

Example: {'FanID', 'vMotor'}

Example: ["FanID" "vMotor"]

Data Types: char | string | cell

Output Arguments

type — Data types of variables
string array

Data types of variables exported to the stream, returned as a string array.

Each element of type specifies the data type of a variable in the stream. If you specified selection,
the order of the returned types matches the order of the variables named in selection. Otherwise,
the order matches the order of the variable names in the timetable row used to create opts in the
call to detectExportOptions.

name — Names of variables
string array

Names of variables exported to the stream, returned as a string array.

Each element of name specifies the name of a variable in the stream. The number and order of the
returned names matches the number and order of the data types returned by type.

Version History
Introduced in R2022b

See Also
setvartype | detectExportOptions

10-37

10 Streaming Functions

identifyingName
Package: matlab.io.stream.event

Event stream name

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

name = identifyingName(stream)

Description

name = identifyingName (stream) returns the name that uniquely identifies an event stream. If
the stream provider is Kafka, this name is the name of the topic that the stream is connected to.

Examples

Get Name of Kafka Topic

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create an object for reading from and writing to the Kafka topic CoolingFan.

ks

kafkaStream("kafka.host.com",9092, "CoolingFan")
ks =
KafkaStream with properties:

Topic: "CoolingFan"
GroupID: "425b8750-87ee-4d86-8e06-6flalebfe009"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
NumTimeoutRetries: 1
State: Idle
WindowSize: 0
KeyVariable: "key"
KeyEncoding: "utfl1l6"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"
BodyFormat: "JSON"
ImportBody: 1
ImportOptions: [0x0 matlab.io.stream.event.ImportOptions]
ExportOptions: [1x1 matlab.io.stream.event.ExportOptions]

10-38

identifyingName

PublishSchema: 1
ReadLimit: "Size"
TimestampResolution: "Milliseconds"
WindowUnit: None
Name: "CoolingFan"

Get the name of the Kafka topic.
identifyingName(ks)

ans =

"CoolingFan"

Input Arguments

stream — Object connected to event stream
KafkaStream object | InMemoryStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream, InMemoryStream, or
TestStream object.

Version History
Introduced in R2022b

See Also
detectImportOptions

10-39

10 Streaming Functions

ImportOptions

Import options for event stream

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description

An ImportOptions object specifies how MATLAB imports tabular data from event streams. The
object contains properties that control the data import process, including handling of errors and
missing data.

Creation

You can create an ImportOptions object by using either the detectImportOptions function or
the eventStreamImportOptions function. The preferred way is to use detectImportOptions.

* Use detectImportOptions to detect and populate the import properties based on the contents
of the event stream specified by stream.

opts = detectImportOptions(stream)

* Use eventStreamImportOptions to create import properties by specifying import options as
name-value arguments.

opts = eventStreamImportOptions(Namel=Valuel,...,NameN=ValueN)

Properties

SelectedVariableNames — Subset of variables to import
character vector | string scalar | cell array of character vectors | string array

Subset of variables to import, specified as a character vector, string scalar, cell array of character
vectors, or string array.

SelectedVariableNames must be a subset of names contained in the VariableNames property. By
default, SelectedVariableNames contains all the variable names from the VariableNames
property, which means that all variables are imported.

Use the SelectedVariableNames property to import only the variables of interest. Specify a subset
of variables using the SelectedVariableNames property and use the readtimetable function to
import only that subset.

Example: opts.SelectedVariableNames = "x" imports only the variable x from the event
stream when you use readtimetable to import event stream data into a timetable.

Data Types: char | string

VariableNames — Variable names
cell array of character vectors | string array

10-40

ImportOptions

Variable names, specified as a cell array of character vectors or string array. The VariableNames
property contains the names to use when importing variables from the event stream into a timetable.

These variable names must exist in the stream. If the modified variable name is not in the stream, the
import operation fails.

Example: i0.VariableNames returns the current variable names in the event stream.
Example: io.VariableNames(3) = {'Mass'} changes the name of the third variable to Mass.

Data Types: cell | string

VariableTypes — Data type of variables
cell array of character vectors | string array

Data type of variables, specified as a cell array of character vectors or string array containing a set of
valid data type names. The VariableTypes property designates the data types to use when
importing variables from the event stream into a timetable.

The import operation attempts to convert the values in the stream to these types. This operation
succeeds only when the conversion between primitive types is known and unambiguous, such as:

* Integer to string conversions

» Conversions where the constructor of the target type can accept a variable of that type in the
stream

To update the VariableTypes property, use the setvartype function.

Example: i0.VariableTypes returns the data types that stream variables have after they are
imported into MATLAB timetables, which are the types of the corresponding timetable columns.

Example: io = setvartype(io,"vMotor","int32") changes the data type of the vMotor
variable to int32.

Data Types: cell | string

KeyVariable — Key variable name
key (default) | string scalar | character vector

Name of the key variable in the event stream, specified as a string scalar or character vector. The
default value is key.

Data Types: string | char

Object Functions
setvartype Set data types used to import and export variables to stream

Examples

Create Import Options from Event Stream Data

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic Triangles with JSON-encoded event value '{"triangle":

{"x":"3", "y":"4","z":"5"}}". Each event value contains a variable "triangle", which is a
structure of side lengths "x", "y", and "z". The side lengths are integers but are encoded as strings.

10-41

10 Streaming Functions

readtimetable creates a triangle table column for this variable and sets the column value to this
structure:

triangle =

struct with fields:

X: ||3||
y: ||4||
z: ||5||

ImportOptions enables you to change the types of the values in the imported structure and select
which fields to import.

Create a KafkaStream object connected to the Triangles topic.
ks = kafkaStream("kafka.host.com",9092,"Triangles");

Create an ImportOptions object from the Kafka stream object. The data type of the length of each
side is string.

opts = detectImportOptions(ks)

opts =

ImportOptions with properties:

VariableNames: ["triangle/x" "triangle/y" "triangle/z"
VariableTypes: ["string" "string" "string"]
KeyVariable: "key"
SelectedVariableNames: ["triangle/x" "triangle/y" "triangle/z"

To perform mathematical operations on the imported data, update the data type of variables to
double. Because the side length variables are nested within "triangle", use a forward slash ("/")
to specify the path to these variables.

opts = setvartype(opts, ["triangle/x", "triangle/y", "triangle/z"], "double")
opts =

ImportOptions with properties:

VariableNames: ["triangle/x" "triangle/y" "triangle/z"
VariableTypes: ["double" "double" "double"]
KeyVariable: "key"
SelectedVariableNames: ["triangle/x" "triangle/y" "triangle/z"

Update the ImportOptions property of the KafkaStream object.
ks.ImportOptions = opts
ks =

KafkaStream with properties:

Topic: "Triangles”
Group: "85c42e39-695d-467a-86f0-f0095792e7de"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61

10-42

ImportOptions

ImportOptions: "Import to MATLAB types"
ExportOptions: "Source: function eventSchema"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl1l6"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"
BodyFormat: "JSON"
ReadLimit: "Size"
TimestampResolution: "Milliseconds"

When importing the triangles, readtimetable converts the side lengths to double values.

tt = readtimetable(ks);
tt(1,:).triangle

ans =

struct with fields:

N < X
U b, W

Create Import Options by Specifying Import Variable Names and Types

Create a schema for importing data from an event stream into MATLAB by specifying variable names
and their data types to use during the import.

names
types

[IIXII , IISymbo'Lll] ;
["double","string"];

Construct an ImportOptions object using this data import schema.
opts = eventStreamImportOptions(VariableNames=names,VariableTypes=types)
opts =

ImportOptions with properties:

VariableNames: ["x" "symbol"]
VariableTypes: ["double" "string"]
KeyVariable: [0x0 string]
SelectedVariableNames: ["x" "symbol"]

Apply the import options when creating a KafkaSt ream object.

ks = kafkaStream("kafka.host.com",9092,"Your Kafka Topic",ImportOptions=opts);
Import the data. The "Your Kafka Topic" topic must have events with exactly two variables, x and

symbol. In addition, the types of these variables must be convertible to double and string,
respectively. Otherwise, readtimetable throws an error.

10-43

10 Streaming Functions

tt = readtimetable(ks);

Version History
Introduced in R2022b

See Also
detectImportOptions | setvartype | readtimetable

10-44

inMemoryStream

inMemoryStream

Create connection to event stream hosted by MATLAB without schema processing applied

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description
The inMemoryStream function creates an InMemoryStream object, which you can use to test
reading from and writing to event streams hosted by MATLAB. Unlike the TestStream object,

InMemoryStream objects do not apply schema processing when reading and writing timetable data.
The data in an inMemoryStream object disappears when you exit MATLAB.

Creation

Syntax

stream = inMemoryStream
stream = inMemoryStream(Name=Value)

Description

stream = inMemoryStream creates an InMemoryStream object connected to an event stream
hosted by MATLAB that does not apply schema processing.

stream = inMemoryStream(Name=Value) specifies event stream options using one or more
Name=Value arguments when creating an ohject connected to an event stream hosted by MATLAB.
Name can also be a property name on page 10-46, with Value as the corresponding value. You can
specify several name-value arguments in any order as Namel=Valuel,...,NameN=ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Duration — Timestamp span in event window
0 (default) | duration scalar

Timestamp span in the event window, specified as a duration scalar. Duration determines the events
that the readtimetable function returns based on their timestamp. Duration specifies the
difference between the last and first timestamps of events in the event window.

You can specify either the Duration property or the Rows property, but not both.

10-45

10 Streaming Functions

10-46

Example: Duration=minutes (1) specifies that each call to readtimetable returns a timetable
that has one minute's worth of events, where the timestamp of the last event is no more than one
minute later than the timestamp of the first event.

Data Types: duration

Rows — Number of events in event window
50 (default) | positive integer

Number of events in the event window, specified as a positive integer. Rows specifies the number of
rows that a call to the readtimetable function returns. If there are less than the number of
specified rows available for reading, then readtimetable times out and returns an empty timetable.

You can specify either the Duration property or the Rows property, but not both.
Example: Rows=500 specifies that each call to readtimetable returns a timetable with 500 rows.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Properties

Name — Event stream name
string scalar

Event stream name, specified as a string scalar or character vector.

You cannot set the value of this property or use it as an input argument during object creation.
Example: 5cb30967-46fd-4058-8be7-704e4dbccc8d
Data Types: string

KeyVariable — Name of key variable

key (default) | string scalar | character vector

Name of the key variable in the event stream, specified as a string scalar or character vector.
Data Types: string | char

TimestampResolution — Unit of event timestamp
"Milliseconds" (default) | "Seconds" | "Minutes" | "Hours" | "Days"

Unit of event timestamp, specified as one of these values:

+ "Milliseconds"
+ "Seconds"

* "Minutes"

* "Hours"

* "Days"

Interpret the event timestamp as the number of corresponding units before or after the Unix epoch.

Data Types: string | char

ReadLimit — Wait strategy
"Size" (default) | "Time"

inMemoryStream

Strategy to wait for a response from the stream, specified as one of these values:

* "Size" — Client prioritizes filling the event window. Using this strategy, the client might wait
longer than the RequestTimeout time period as long as it is still receiving the expected number
of messages. The default number of messages is 50. If the client receives no messages within the
RequestTimeout time period, it no longer waits.

* "Time" — Client strictly adheres to the RequestTimeout limit, even if it has not received the
expected number of messages. RequestTimeout specifies the amount of time the stream object
waits between receiving events. If the stream is actively receiving data, it does not time out during
that operation.

Note This object does not implement the ReadLimit property and does not have a
RequestTimeout property. It is provided for compatibility with other stream connector objects. By
setting the wait strategy in this object, you can more easily update your code to switch between
objects that do implement this property, such as KafkaStream.

WindowSize — Event window size
50 (default) | duration scalar | positive integer

This property is read-only.

Event window size, specified by a fixed amount of time (using the Duration argument) or a fixed
number of messages (using the Rows argument).

Data Types: duration | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

Event Key and Body Encoding

BodyEncoding — Character encoding format for bits in event body
utf8 (default) | uint8 | utf16 | base64

Character encoding format used to interpret the bits in the event body, specified as one of the
following:

¢ utf8 — UTF-8 encoding format

e utflé — UTF-16 encoding format

* base64— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

This property determines the size and encoding of the bytes used in the event body, which are in the
format specified by BodyFormat.

BodyFormat — Format of bytes in event body
JSON (default) | Array | Text | Binary

Format of bytes in event body, specified as one of the following:

* JSON — JSON string
* Array — MATLAB array
* Text — String data

10-47

10 Streaming Functions

10-48

* Binary — Binary data
Depending on the encoding specified by BodyEncoding, bytes can be larger than eight bits.

KeyByteOrder — Order for storing bits in event key
BigEndian (default) | LittleEndian | MatchHost | NotApplicable

Order for storing bits in the event key, specified as one of the following.

* LittleEndian — Least significant bit is stored first
* BigEndian — Most significant bit is stored first

* MatchHost— Bits are stored in the same order as is used by the host computer on which the
streaming data framework is running

* NotApplicable — Not an integer key
This property is applicable only for integer keys and not applicable to floating point or text keys.

KeyEncoding — Character encoding format for bits in event key
utf8 (default) | utfl6 | base64 | uint8

Character encoding format used to interpret the bits in an event key, specified as one of the following:

utf8 — UTF-8 encoding format
utfle — UTF-16 encoding format
* base64— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

If KeyEncoding is utf8 or utf16, then the KeyType property must be text. If KeyEncoding is
base64 or uint8, then KeyType must be one of the numeric encoding formats.

KeyType — Character encoding scheme for bytes in event key
text (default) | utf1l6 | int8 | uint8 | int1l6 | uintl6 | int32 | uint32 | int64 | uint64 |
single | double

Character encoding scheme used to interpret the bytes in an event key, specified as one of these
values:

* uint8 — One-byte unsigned integer

* int8 — One-byte signed integer

* uintl6 — Two-byte unsigned integer

* int16 — Two-byte signed integer

* uint32 — Four-byte unsigned integer

* 1int32 — Four-byte signed integer

* uint64 — Eight-byte unsigned integer

* 1int64 — Eight-byte signed integer

* single — Single-precision IEEE 754 floating point number
* double — Double-precision IEEE 754 floating point number
* text — String

inMemoryStream

If KeyType is text, then the KeyEncoding property must be either utf8 or utf16. If KeyType is
any of the other numeric encoding formats, then KeyEncoding must be either base64 or uints8.

Object Functions

readtimetable Read timetable from event stream
writetimetable Write timetable to event stream

seek Set read position in event stream

preview Preview subset of events from event stream
identifyingName Event stream name

detectImportOptions Create import options based on event stream content
detectExportOptions Create export options based on event stream content

Examples

Write and Preview Events for In-Memory Stream

Create an InMemoryStream object to preview events from and write events to an event stream
hosted by MATLAB.

is inMemoryStream

is =
InMemoryStream with properties:

Name: "7803fad7-64b3-4439-af40-1b0el39fd68a"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utf8"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "uint8"
BodyFormat: "Array"
ReadLimit: "Size"
TimestampResolution: "Milliseconds"

Write timetable data to the event stream.

load indoors
writetimetable(is,indoors)

Preview data from the timetable. Unlike TestStream and KafkaStream, objects the
InMemoryStream object does not include a key column to identify the event source, because the
data kept in memory disappears when you exit MATLAB.

preview(is)
ans =
8x2 timetable

Time Humidity AirQuality

10-49

10 Streaming Functions

10-50

2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79
2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80
2015-11-15 06:06:23 36 80
2015-11-15 07:19:35 36 80
2015-11-15 08:32:47 37 80

Version History
Introduced in R2022b

See Also
kafkaStream | testStream

Topics
“Streaming Data Framework for MATLAB Production Server Basics” on page 11-2

isProperty

isProperty
Package: matlab.io.stream.event

Determine if Kafka stream provider property is set

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

tf = isProperty(ks,name)

tf isProperty(ks,name,cat)
[tf,prop] = isProperty()
[tf,prop,type] = isProperty(__)

Description

tf = isProperty(ks,name) returns a logical 1 (true) if the Kafka stream provider property name
is set in the stream connector object ks. Otherwise, it returns logical 0 (false). The
getProviderProperties function returns nonempty property data only for properties for which
isProperty returns true.

You can specify multiple property names in name. The length of tf equals the number of string
property names in name.

tf = isProperty(ks,name, cat) restricts the search for a property to within Kafka stream
provider category cat.

[tf,prop] = isProperty() also returns the property names and categories, prop. Because
properties can belong to multiple categories or be unset, prop might not be the same size as tf. You
can return prop using any of the preceding syntaxes.

[tf,prop,type] = isProperty() also returns the data type of the property values, type.

The prop and type arguments are always the same size.

Examples

Determine If Specific Kafka Stream Provider Properties Are Set

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol”,"SSL","ssl.truststore.type","PEM",

"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

10-51

10 Streaming Functions

10-52

Check if the security.protocol and retention.ms properties are set.
isProperty(ks,["security.protocol","retention.ms"])
ans =

1x2 logical array

1 1

Determine If Kafka Stream Provider Properties from Specific Category Are Set

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol”,"SSL","ssl.truststore.type","PEM",
"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

Check if the security.protocol and retention.ms properties belong to the CreateTopic
category.

isProperty(ks,["security.protocol" "retention.ms"],"CreateTopic")
ans =
1x2 logical array

0 1

Return Data for Set Kafka Stream Provider Properties

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object connected to the Kafka host and also specify Kafka provider properties
during object creation.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan",
"security.protocol","SSL","ssl.truststore.type","PEM",

"ssl.truststore.location","kafka-boston.pem","retention.ms",500);

Check if the security.protocol and retention.ms properties belong to the CreateTopic
category and return the property names, categories, and data types. Because security.protocol
is set in two different categories, it appears twice in the prop and type outputs.

[tf,prop,type] = isProperty(ks,["security.protocol" "retention.ms"]);
tf

name = {prop.name}

cat = {prop.category}

type

isProperty

tf =
1x2 logical array

1 1

name =
1x3 cell array

{["security.protocol"]} {["security.protocol"]} {["retention.ms"]}

cat =
1x3 cell array

{["Consumer"]} {["Producer"]} {["CreateTopic"]}

type =
1x3 string array

"string" "string" "string"

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

name — Kafka stream provider property names
string scalar | character vector | string array | cell array of character vectors

Kafka stream provider property names, specified as a string scalar, character vector, string array, or
cell array of character vectors. If a property is not set in ks, then isProperty returns a logical 0
(false) for that property in tf, and the optional prop and type arguments do not return data for this
property.

Example: tf = isProperty(ks,"retention.ms") returns whether the retention.ms property
is set in ks.

Data Types: char | string | cell

cat — Kafka stream provider category names
string scalar | character vector | string array | cell array of character vectors

Kafka stream provider category names, specified as a string scalar, character vector, string array, or
cell array of character vectors.

The specified categories must be present in ks. To get a list of valid categories, use the
ks.PropertyCategories property.

Data Types: char | string | cell

10-53

10 Streaming Functions

10-54

Output Arguments

tf — Provider property set indicator
logical vector

Provider property set indicator, returned as a logical array of these values:

* 1 — The property in the corresponding position of name is set in ks.
* 0 — The property in the corresponding position of name is not set in ks.

prop — Kafka stream provider property names and categories
structure array

Kafka stream provider property names and categories, returned as a structure array. Each structure
corresponds to a provider property in ks and has these fields:

* name — Provider property name, returned as a string

* category — Category that the provider property belongs to, returned as a string

Because properties can belong to more than one category, the category and name uniquely identity a
property.

type — Data types of Kafka stream provider property values
string scalar | string array

Data types of Kafka stream provider property values, returned as a string scalar or string array. Each
string in type specifies the data type of a set property returned in the corresponding position of
prop.

Version History
Introduced in R2022b

See Also
getProviderProperties | categorylList

Topics
“Connect to Secure Kafka Cluster” on page 11-9

kafkaStream

kafkaStream

Create connection to event stream in Kafka topic

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description

The kafkaStream function creates a KafkaStream object that connects to a Kafka topic and reads
and writes event streams from that topic.

An event consists of three parts:

* Key — Identifies event source
* Timestamp — Indicates time at which event occurred
* Body — Contains event data specified as an unordered set of (name, value) pairs

After creating a KafkaStream object, use the readtimetable function to read the events into a
timetable or the writetimetable function to write a timetable to the stream.

readtimetable converts events into rows of a timetable. The names in the event body become the
timetable column names, the value associated with each name becomes the column value in the event
row, and the event timestamp becomes the row timestamp. writetimetable converts rows of a
timetable into events in a stream. The object “Properties” on page 10-58 and Name-Value Arguments
on page 10-57 let you specify how events are converted to and from timetables.

Creation

Syntax

ks = kafkaStream(host,port,topic)

ks = kafkaStream(host,port,topic,propnamel,propvall,...,propnameN,propvalN)
ks = kafkaStream(,Name=Value)

Description

ks = kafkaStream(host,port,topic) creates an object connected to a Kafka topic.

ks = kafkaStream(host,port,topic,propnamel,propvall,...,propnameN,propvalN)

specifies Kafka provider properties when creating an object connected to a Kafka topic.

Specify Kafka provider properties and their corresponding values using one or more
propname, propval argument pairs. Use single or double quotes around propname. You can specify
several properties and their values in any order as propnamel, propvall,...,propnameN, propvalN.

ks = kafkaStream(,Name=Value) uses any of the earlier syntaxes and additionally specifies
event stream options when creating an object connected to a Kafka topic.

10-55

10 Streaming Functions

Specify event stream options using one or more Name=Value arguments. Name can also be a
property name on page 10-58, with Value as the corresponding value. You can specify several
name-value arguments in any order as Namel=Valuel,...,NameN=ValueN.

Input Arguments

host — Hostname of Kafka server

character vector | string scalar

Hostname of the Kafka server, specified as a character vector or string scalar.
Example: '144.213.5.7"' or 'localhost!

Data Types: char | string

port — Port number of Kafka server

integer in range [0, 65,535]

Port number of the Kafka server, specified as an integer in the range [0, 65,535].
Example: 9092

topic — Kafka topic name

character vector | string scalar

Kafka topic name, specified as a character vector or string scalar.

Example: "CoolingFan"

Data Types: char | string

propname — Name of Kafka provider property
character vector | string scalar

Name of Kafka provider property, specified as a character vector or string scalar. Use single or double
quotes around propname. Kafka property names always contain at least one dot character, for
example, retention.ms. For a list of Kafka properties, see the Kafka documentation: https://
kafka.apache.org/documentation/#configuration.

The value of the property, propval, must follow the property name. Specify the property name and
its corresponding value as a comma-separated pair.

Example: kafkaStream(host,port,topic,"security.protocol","SASL SSL") sets the
Kafka configuration property security.protocol to SASL SSL.

propval — Value of Kafka provider property
any supported MATLAB data type

Value of Kafka provider property. For a list of Kafka properties and their values, see the Kafka
documentation: https://kafka.apache.org/documentation/#configuration.

The value of the property must follow the property name, propname. Specify the property name and
its corresponding value as a comma-separated pair. You can specify propval as any supported
MATLAB data type, but it must be possible to convert that value to a string.

Example: kafkaStream(host,port, topic, "sasl.mechanism", "SCRAM-SHA-512") sets the
value of the Kafka configuration property sasl.mechanismto SCRAM-SHA-512.

10-56

https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration

kafkaStream

Name-Value Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Event Window Size

Duration — Timestamp span in event window
0 (default) | duration scalar

Timestamp span in the event window, specified as a duration scalar. Duration determines the events
that the readtimetable function returns based on their timestamp. Duration specifies the
difference between the last and first timestamps of events in the event window.

readtimetable does not return until it processes all events in the window, so windows with large
durations can block other processes from continuing. To configure a timeout period to prevent
blocking, use the ReadLimit property.

You can specify either the Duration property or the Rows property, but not both.

Example: Duration=minutes (1) specifies that each call to readtimetable returns a timetable
that has one minute's worth of events, where the timestamp of the last event is no more than one
minute later than the timestamp of the first event.

Data Types: duration

Rows — Number of events in event window
50 (default) | positive integer

Number of events in the event window, specified as a positive integer. Rows specifies the number of
rows that a call to the readtimetable function returns. If there are less than the number of
specified rows available for reading, then readtimetable times out and returns an empty timetable.

readtimetable does not return until it processes all events in the window, so windows with large
row values can block other processes from continuing. To configure a timeout period to prevent
blocking, use the ReadLimit property.

You can specify either the Duration property or the Rows property, but not both.

Example: Rows=500 specifies that each call to readtimetable returns a timetable with 500 rows.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64
Schema

ImportSchema — Rules for converting event data to MATLAB data types
JSON string in event schema format

Rules for converting event data to MATLAB data types, specified as a JSON string in event schema
format. You can specify an event schema more easily using the ImportOptions property.

ExportSchema — Rules for converting MATLAB data types to event data
JSON string in event schema format

Rules for converting MATLAB data types to event data, specified as a JSON string in event schema
format. You can specify an event schema more easily using the ExportOptions property.

10-57

10 Streaming Functions

10-58

PublishSchema — Flag to indicate whether export schema is written to output stream
true (default) | false

Flag to indicate whether the export schema is written to the output stream, specified as a logical
scalar.

The schema is embedded in each event, which can significantly increase the size of the event. If
downstream applications do not require the schema, set this flag to false to reduce the number of
bytes in your stream.

Data Types: logical

Properties

Group — Kafka consumer group ID
UUID (default) | character vector | string scalar

Kafka consumer group ID, specified as a character vector or string scalar.

Multiple Kafka consumers can belong to the same consumer group. In that case, Kafka shares data
between the consumers in the group so that no two consumers in the same group ever receive the
same messages. By default, every kafkaStream object has a unique consumer group ID, which
allows multiple consumers to read from the same topic independently.

Data Types: char | string

KeyVariable — Name of key variable
key (default) | string scalar | character vector

Name of the key variable in the event stream, specified as a string scalar or character vector.

Data Types: string | char

Name — Kafka topic name
string scalar | character vector

Kafka topic name, specified as a string scalar or character vector.

Example: CoolingFan

Data Types: string | char

Order — Event order
"EventTime" (default) | "IngestTime"

Strategy to order events in the stream, specified as one of these values:

* "EventTime" — Order events based on the time that they occur. Ensures event-time
chronological order even when events arrive out of order at the Kafka server.

* "IngestTime" — Order events based on the time that they appear in the stream.

You cannot set the value of this property after object creation.

Data Types: string | char

TimestampResolution — Unit of event timestamp
"Milliseconds" (default) | "Seconds" | "Minutes" | "Hours" | "Days"

kafkaStream

Unit of event timestamp, specified as one of these values:

+ "Milliseconds"

+ "Seconds"

* "Minutes"

* "Hours"

* "Days"

Interpret the event timestamp as the number of corresponding units before or after the Unix epoch.
Data Types: string | char

WindowSize — Event window size
50 (default) | duration scalar | positive integer

This property is read-only.

Event window size, specified by a fixed amount of time (using the Duration argument) or a fixed
number of messages (using the Rows argument).

Data Types: duration | single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

Import and Export Options

ImportOptions — Rules for transforming stream events into MATLAB data
ImportOptions object

Rules for transforming stream events into MATLAB data, specified as an ImportOptions object. This
object controls the import of stream events into MATLAB.

ExportOptions — Rules for transforming MATLAB data into stream events
ExportOptions object

Rules for transforming MATLAB data into stream events, specified as an ExportOptions object. This
object controls the export of MATLAB data into streams.

Connection and Request Timeouts

ConnectionTimeout — Number of seconds to wait for initial response from Kafka host
30 (default) | positive integer

Number of seconds that a client waits for the initial response from the Kafka host, specified as a
positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

RequestTimeout — Number of seconds to wait before terminating request
61 (default) | positive integer

Number of seconds to wait before terminating a request, specified as a positive integer. The wait time
includes connecting to the Kafka host as well as data transfer between the Kafka host and the client.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

10-59

10 Streaming Functions

10-60

ReadLimit — Wait strategy
"Size" (default) | "Time"

Strategy to wait for a response from the stream, specified as one of these values:

+ "Size" — Client prioritizes filling the event window. Using this strategy, the client might wait
longer than the RequestTimeout time period as long as it is still receiving the expected number
of messages. The default number of messages is 50. If the client receives no messages within the
RequestTimeout time period, it no longer waits.

* "Time" — Client strictly adheres to the RequestTimeout limit, even if it has not received the
expected number of messages. RequestTimeout specifies the amount of time the stream object
waits between receiving events. If the stream is actively receiving data, it does not time out during
that operation.

Event Key and Body Encoding

BodyEncoding — Character encoding format for bits in event body
utf8 (default) | uint8 | utf1l6 | baseb4

Character encoding format used to interpret the bits in the event body, specified as one of the
following:

* utf8 — UTF-8 encoding format

* utflée — UTF-16 encoding format

* base64— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

This property determines the size and encoding of the bytes used in the event body, which are in the
format specified by BodyFormat.

BodyFormat — Format of bytes in event body
JSON (default) | Array | Text | Binary

Format of bytes in event body, specified as one of the following:

* JSON — JSON string

* Array — MATLAB array
* Text — String data

* Binary — Binary data

Depending on the encoding specified by BodyEncoding, bytes can be larger than eight bits.

KeyByteOrder — Order for storing bits in event key
BigEndian (default) | LittleEndian | MatchHost | NotApplicable

Order for storing bits in the event key, specified as one of the following.

* LittleEndian — Least significant bit is stored first
* BigEndian — Most significant bit is stored first

* MatchHost— Bits are stored in the same order as is used by the host computer on which the
streaming data framework is running

kafkaStream

* NotApplicable — Not an integer key
This property is applicable only for integer keys and not applicable to floating point or text keys.

KeyEncoding — Character encoding format for bits in event key
utfl6 (default) | utf8 | base64 | uint8

Character encoding format used to interpret the bits in an event key, specified as one of the following:

* utf8 — UTF-8 encoding format

e utflé — UTF-16 encoding format

* baseb4— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

If KeyEncoding is utf8 or utf16, then the KeyType property must be text. If KeyEncoding is
base64 or uint8, then KeyType must be one of the numeric encoding formats.

KeyType — Character encoding scheme for bytes in event key
utfle6 (default) | int8 | uint8 | int16 | uintl6 | int32 | uint32 | int64 | uint64 | single |
double | text

Character encoding scheme used to interpret the bytes in an event key, specified as one of these
values:

* uint8 — One-byte unsigned integer

* int8 — One-byte signed integer

* uintl6 — Two-byte unsigned integer

¢ int16 — Two-byte signed integer

* uint32 — Four-byte unsigned integer

* int32 — Four-byte signed integer

* uint64 — Eight-byte unsigned integer

* 1int64 — Eight-byte signed integer

* single — Single-precision IEEE 754 floating point number
* double — Double-precision IEEE 754 floating point number
* text — String

If KeyType is text, then the KeyEncoding property must be either utf8 or utf16. If KeyType is
any of the other numeric encoding formats, then KeyEncoding must be either base64 or uints8.

Object Functions

Import and Export

readtimetable Read timetable from event stream
writetimetable Write timetable to event stream

seek Set read position in event stream

preview Preview subset of events from event stream
identifyingName Event stream name

detectImportOptions Create import options based on event stream content

10-61

10 Streaming Functions

10-62

detectExportOptions Create export options based on event stream content

Kafka Stream Operations

readevents Read raw events from Kafka stream without schema processing applied
flush Reset read window boundaries

stop Stop processing event streams from Kafka topic

loggederror Error information for Kafka stream operation

createTopic Create topic in Kafka cluster

deleteTopic Remove topic from Kafka cluster

Kafka Provider Properties

categoryList Kafka stream provider property list
getProviderProperties Kafka stream configuration property data
isProperty Determine if Kafka stream provider property is set
Examples

Set Kafka Security Protocol

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that

has a topic CoolingFan.

Assume that the Kafka host is configured to use SSL. To configure SSL communication between the
Kafka host and the client, provide SSL configuration settings when creating an object for reading and

writing to the Kafka topic.
ks

kafkaStream("kafka.host.com",9092, "CoolingFan",

"security.protocol","SASL SSL",
"ssl.truststore.type", "PEM",

"ssl.truststore.location","prodserver.pem")

ks =

KafkaStream with properties:

Topic:

Group:

Order:

Host:

Port:
ConnectionTimeout:
RequestTimeout:
ImportOptions:
ExportOptions:
PublishSchema:
WindowSize:
KeyVariable:
KeyEncoding:
KeyType:
KeyByteOrder:
BodyEncoding:
BodyFormat:
ReadLimit:
TimestampResolution:

"CoolingFan"
"da576775-49¢c9-4de3-9955-2bdd9f963aa0"
EventTime

"kafka.host.com"

9092

30

61

“Import to MATLAB types"
"Source: function eventSchema"
"true"

50

n keyll

"utfle"

"text"

"BigEndian"

"utf8"

"JSON"

"Size"

"Milliseconds"

kafkaStream

Confirm which properties are set.

props = getProviderProperties(ks);
unique({props.name}"')

ans =
7x1 cell array

{'auto.offset.reset' }
{'retention.ms' }
{'sasl.jaas.config' }
{'sasl.username' }
{'security.protocol’ }
{'ssl.truststore.location'}
{'ssl.truststore.type' }

Read Specific Number of Kafka Messages

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create an object connected to the CoolingFan topic and request only 10 messages instead of the
default.

ks kafkaStream("kafka.host.com",9092,"CoolingFan",Rows=10)

ks =
KafkaStream with properties:

Topic: "CoolingFan"
Group: "da576775-49c9-4de3-9955-2bdd9f963aa0"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "Import to MATLAB types"
ExportOptions: "Source: function eventSchema"
PublishSchema: "true"
WindowSize: 10
KeyVariable: "key"
KeyEncoding: "utf16"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"
BodyFormat: "JSON"
ReadLimit: "Size"
TimestampResolution: "Milliseconds"

Use the object to read 10 messages from the event stream into a timetable.

tt

readtimetable(ks)
tt

10-63

10 Streaming Functions

10x11 timetable

timestamp vMotor wMotor Tmass

31-0ct-2020 00:00:00 .0909 0 25
31-0ct-2020 00:00:00 .1506 100.5 25.17
31-0ct-2020 00:00:00 .1739 190.9 25.223
31-0ct-2020 00:00:00 .1454 330.61 25.15

31-0ct-2020 00:00:00
31-0ct-2020 00:00:00
31-0ct-2020 00:00:00
31-0ct-2020 00:00:00
31-0ct-2020 00:00:00

.1346 382.77 25.122
.1287 420.88 25.106
.1253 454 .55 25.096
.1232 478.1 25.09
.1217 500.16 25.086

R el

Version History
Introduced in R2022b

See Also
testStream| inMemoryStream | readtimetable | preview | readevents | loggedError

Topics

“Streaming Data Framework for MATLAB Production Server Basics” on page 11-2
“Process Kafka Events Using MATLAB” on page 11-5

“Connect to Secure Kafka Cluster” on page 11-9

External Websites
Kafka Introduction

10-64

https://kafka.apache.org/intro

loggederror

loggederror

Package: matlab.io.stream.event

Error information for Kafka stream operation

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

txt = loggederror(ks)

Description

txt = loggederror(ks) return the text txt of the most recent error that is logged in the Kafka
error log. To obtain all Kafka log information, see “Obtain Kafka Event Stream Log Files” on page 11-
21.

Examples

Get Error Details for Kafka Stream Operation

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Create a KafkaStream object connected to the RecamanSequence topic. If the host you specify
when creating the KafkaStream object does not exist, an error occurs if you call readtimetable.

ks = kafkaStream("kafka.host123.com",9092, "RecamanSequence");
tt = readtimetable(ks);

loggederror(ks)

ans =

- Failed to start connector with exception:

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

Version History
Introduced in R2022b

10-65

10 Streaming Functions

See Also
kafkaStream

Topics
“Obtain Kafka Event Stream Log Files” on page 11-21

10-66

package

package
Package: matlab.io.stream.event

Package stream processing function into deployable archive configured by EventStreamProcessor

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

filePath = package(esp)

filePath = package(esp,Name=Value)
Description

filePath = package(esp) uses the eventStreamProcessor object esp to create a MATLAB
Compiler SDK project file and opens the Production Server Compiler app. Use this app to package
the streaming function into a deployable archive for MATLAB Production Server.

package returns the full path to the project file.
filePath = package(esp,Name=Value) sets additional options for packaging the function.

For example, if you specify OutputType="Archive", the package function returns a deployable
archive (CTF file) instead of a project file.

Examples

Package Streaming Analytic Function for Deployment to MATLAB Production Server

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic Triangles.

Also, assume that you have a streaming analytic function classifyTriangle.
Create a KafkaStream object connected to the Triangles topic.
ks = kafkaStream("kafka.host.com",9092,"Triangles");

Create an EventStreamProcessor object to run the classifyTriangle streaming analytic
function.

esp = eventStreamProcessor(ks,@classifyTriangle);

You can use EventStreamProcesor functions such as execute, startServer, start,
stopServer, and stop to iterate over and test the streaming analytic functions using a local test
server. Then, you can package the streaming analytic function classifyTriangle into a deployable
archive for deployment to MATLAB Production Server.

10-67

10 Streaming Functions

file

package(esp)
file =

"J:\classifyTriangle.prj"

The package function generates a MATLAB project file based on the eventStreamProcessor
object, returns the path to this file, and opens this project file with the Production Server Compiler
app. The project file contains values for:

» The streaming analytic function, classifyTriangle.m

* The entry point function, streamfcn.m

* The deployable archive, classifyTriangle.ctf

To modify the list of deployed functions or the name of the generated archive, see “Customize
Application and Its Appearance” (MATLAB Compiler SDK).

In the Production Server Compiler, click Package to generate the deployable archive. You can
deploy the generated archive to MATLAB Production Server. For more information on deploying to
MATLAB Production Server, see “Deploy Archive to MATLAB Production Server”.

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ..., NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: filePath = package(esp,OutputFolder="'J:\")

OutputType — File type
Project (default) | Archive

Type of file created by the package function, specified as one of these values.

* Project — Creates a productionServerCompiler project file and launches the Production
Server Compiler app. You can create a CTF file using the Production Server Compiler app.

* Archive — Creates a CTF file.
Data Types: char | string

StateStore — Persistent storage connection name
string | character vector

Persistent storage connection name, specified as a string or character vector. You must specify a
StateStore when using InitialState or when using a stateful stream function. The connection
name must be known to the MATLAB Production Server instance to which the archive will be
deployed. For more information on using a data cache for persistent storage, see “Data Caching
Basics”.

10-68

package

Data Types: char | string

ExtraFiles — Additional files to include in archive
character vector | string scalar | string array

Additional files to include in the generated archive, specified as a character vector or string scalar for
a single file or as a string array for multiple files.

Example: ExtraFiles=["data.mat","/schema/registry/schema.json"] includes the files
data.mat and schema. json in the generated deployable archive.

Data Types: char | string

OutputFolder — Location of generated file
current folder (default) | string | character vector

Location of the generated file, specified as a string or character vector.
Example: OutputFolder="'J:\" saves the generated file in J:\.
Data Types: string | char

ArchiveName — Name of generated deployable archive
streamFcn (default) | string | character vector

Name of the generated deployable archive, specified as a string or character vector.

Data Types: char | string

OpenProject — Flag to automatically open project in MATLAB
true (default) | false

Flag to automatically open the project in MATLAB, specified as logical true or false. This property
is incompatible with OQutputType="Archive".

Data Types: logical

Version History
Introduced in R2022b

See Also
streamingDataCompiler | eventStreamProcessor

Topics
“Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17

10-69

10 Streaming Functions

10-70

preview

Package: matlab.io.stream.event

Preview subset of events from event stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax
tt = preview(stream)
tt = preview(stream,ReadLimit="Time",RequestTimeout=rt)

Description

tt = preview(stream) returns a timetable containing the first eight events from an event stream
without advancing the read position. Multiple calls to preview return the same set of events.

tt = preview(stream,ReadLimit="Time" 6 RequestTimeout=rt) specifies the request timeout
value rt when previewing data in an event stream. This syntax is valid only for KafkaStream
objects.

Examples

Preview Event Data

Create an inMemoryStream object to read and write events to an event stream hosted by MATLAB.
is = inMemoryStream;

Write timetable data to the event stream.

load indoors
writetimetable(is,indoors)

Preview the first 8 events in the stream.
preview(is)
ans =

8x2 timetable

Time Humidity AirQuality
2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79
2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80

preview

2015-11-15 06:06:23
2015-11-15 07:19:35
2015-11-15 08:32:47

36
36
37

Set Timeout when Previewing Kafka Event Data

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic IndoorTemp.

Create a KafkaStream object for reading from and writing to the IndoorTemp topic.

ks = kafkaStream("kafka.host.com",9092,"IndoorTemp");

Write timetable data to the event stream.

load indoors

writetimetable(ks,indoors)

Set a timeout value of 30 seconds when previewing the first 8 events.

preview(ks,ReadLimit="Time",RequestTimeout=30)

ans =

8x2 timetable

Time Humidity AirQuality
2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79
2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80
2015-11-15 06:06:23 36 80
2015-11-15 07:19:35 36 80
2015-11-15 08:32:47 37 80

Input Arguments

stream — Object connected to event stream
KafkaStream object | InMemoryStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream, InMemoryStream, or
TestStream object.

rt — Number of seconds to wait before terminating request
61 (default) | positive integer

Number of seconds to wait before terminating a request that has not yet begun to transfer data,

specified as a positive integer.

If the stream provider is Kafka, the wait time includes connecting to the Kafka host as well as data

transfer between the Kafka host and the client.

10-71

10 Streaming Functions

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Version History
Introduced in R2022b

See Also
readtimetable | kafkaStream | inMemoryStream | testStream | seek

10-72

readevents

readevents

Package: matlab.io.stream.event

Read raw events from Kafka stream without schema processing applied

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

event = readevents(ks)

Description

event = readevents(ks) returns a structure array that contains raw events from the Kafka
stream ks. Each event in the stream creates an event structure in the resulting structure array. No
schema processing is applied to the event.

Examples

Read Raw Events From Kafka

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Create a KafkaStream object for reading from and writing to the RecamanSequence topic.

ks kafkaStream("kafka.host.com",9092, "RecamanSequence")

ks =
KafkaStream with properties:

Topic: "RecamanSequence"
Group: "d89f5726-6abf-461d-alde-4d40ab84c676"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "None"
ExportOptions: "Source: function eventSchema"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl1l6"
KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"
BodyFormat: "JSON"

10-73

10 Streaming Functions

ReadLimit: "Size"
TimestampResolution: "Milliseconds"

Read 50 events, which is the default number of events, from the RecamanSequence topic.
events = readevents(ks)
events =
50x1 struct array with fields:
key

value
timestamp

readevents blocks other operations until it reads 50 messages or times out after 61 seconds of
receiving no messages. To strictly limit blocking time to 61 seconds even if more are messages
available, specify ReadLimit=Time in the call to kafkaStream. To change the timeout duration, for
example, to 15 seconds, specify RequestTimeout=15 in the call to the KafkaStream object, ks.

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

Output Arguments

event — Event information
structure array

Event information, returned as a structure array. Each structure in the array has these fields.

key — Event key
string array | positive integer

Event key as stored in Kafka, returned as a string array or integer. The key identifies the event
source.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
char | string

value — Event value
byte array

Event value, specified as a byte array with a format and encoding determined by the BodyFormat
and BodyEncoding properties of the stream object. The event value does not undergo schema
processing and appears exactly as is stored in Kafka, for example, as a JSON string.

Data Types: string | uint8 | uint16

timestamp — Event timestamp or ingest timestamp
datetime scalar

10-74

readevents

Timestamp of event occurrence or timestamp of event ingestion in Kafka, specified as a datetime
scalar.

Data Types: datetime

Version History
Introduced in R2022b

See Also
readtimetable | kafkaStream

10-75

10 Streaming Functions

readtimetable

Package: matlab.io.stream.event

Read timetable from event stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

tt = readtimetable(stream)

Description
tt = readtimetable(stream) creates a timetable from an event stream.

readtimetable converts events from an event stream into rows of a timetable, where:

* The names in the event body become the timetable column names
* The value associated with each name becomes the column value in the event row.
* The event timestamp becomes the row timestamp.

Examples

Create Timetable from Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create a KafkaStream object for reading from and writing to the CoolingFan topic.
ks = kafkaStream("kafka.host.com",9092,"CoolingFan");

Read events from the CoolingFan topic into a timetable.
tt = readtimetable(ks)
tt =

50x11 timetable

timestamp vMotor wMotor Tmass
31-0ct-2020 00:00:00 1.0909 0 25
31-0ct-2020 00:00:00 1.1506 100.5 25.17
31-0ct-2020 00:00:00 1.1739 190.9 25.223
31-0ct-2020 00:00:00 1.162 267.96 25.192
31-0ct-2020 00:00:00 1.1454 330.01 25.15

10-76

readtimetable

31-0ct-2020 00:00:19 1.0269 239.35 25.785
31-0ct-2020 00:00:19 1.0332 240.45 25.803
31-0ct-2020 00:00:19 1.0267 263.98 25.784
31-0ct-2020 00:00:19 1.0262 243.69 25.783
31-0ct-2020 00:00:19 1.0262 257.21 25.783

Display all 50 rows.

Input Arguments

stream — Object connected to event stream
KafkaStream object | InMemoryStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream, InMemoryStream, or
TestStream object.

Version History
Introduced in R2022b

See Also
writetimetable | kafkaStream | inMemoryStream | testStream | preview | seek

Topics
“Process Kafka Events Using MATLAB” on page 11-5

10-77

10 Streaming Functions

seek

Package: matlab.io.stream.event

Set position in event stream to begin processing events

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

seek(esp,position)
seek(esp,position,Name=Value)

Description

seek(esp,position) sets the stream position at which to begin processing the event stream with
processor esp.

seek(esp,position,Name=Value) additionally specifies options to manage data caching.

Examples

Process Events from Beginning of Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Create a KafkaStream object connected to the RecamanSequence topic.

ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Assume that you have a stateful streaming analytic function recamanSum and a function to initialize
the per-iteration state data called initRecamanSum. Create an EventStreamProcessor object that
runs the recamanSum function and initializes the state data for the first iteration with the
initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum) ;
esp =
EventStreamProcessor with properties:

StreamFunction: @recamanSum
InputStream: [1x1 matlab.io.stream.event.KafkaStream]
OutputStream: [1x1 matlab.io.stream.event.InMemoryStream]
InitialState: @initRecamanSum

GroupVariable: [0x0 string]
ReadPosition: Beginning
ArchiveName: "recamanSum"

ResetStateOnSeek: 1

10-78

seek

Iterate the streaming analytic function over ten event windows.
execute(esp,10);
Check the result of the recamanSum function.

result = readtimetable(esp.OutputStream)

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

position — Position in event stream
"Beginning" | "End" | "Current"

Position in an event stream, specified as one of the following values.

* "Beginning" — First event available in the event stream
 "End" — End of the event stream, which is one event past the latest event in the stream
e "Current" — Just past the current event in the stream

Example: seek(esp, "Beginning") moves the event stream position to the first event in the event
stream.

Data Types: string
Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: seek(esp, "Beginning",ClearState=true) moves the read position to the first event
in the stream and clears the persistent data state.

ClearState — Flag to clear persistent state of data after calling seek
true | false

Flag to clear persistent state of data after calling the seek function, specified as a logical scalar. The
default value is the value of the EventStreamProcessor property ResetStateOnSeek.

Data Types: logical

PersistState — Per-iteration state value of stream processing function
any valid MATLAB data type

Per-iteration state value of the stream processing function after calling the seek function, specified
as any valid MATLAB data type.

If the streaming analytic function is stateful, then PersistState must be a MATLAB value of the

same type as the value returned by the state initialization function set in esp. If the streaming
analytic function is stateless, you cannot specify PersistState.

10-79

10 Streaming Functions

Version History
Introduced in R2022b

See Also
eventStreamProcessor | seek | execute

10-80

setProviderProperties

setProviderProperties

Set properties specific to Kafka configuration

Syntax
setProviderProperties(stream,propnamel,propvall, ...propnameN, propvalN)
Description
setProviderProperties(stream,propnamel,propvall, ...propnameN, propvalN) sets

properties specific to Kafka configuration.

Note It is recommended that you set Kafka properties when creating a Kafka stream object using
kafkaStream. However, if you want to set them after object creation, set them before the object
interacts with the stream, for example, before using the object to read or write to a Kafka topic.
Setting Kafka properties after the stream object interacts with an event stream might have no effect.

Examples

Set Kafka Security Protocol

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create an event stream object connected to a Kafka topic.

ks = kafkaStream(kafka.host.com,9092, "coolingFan");

Set Kafka-specific security properties, security.protocol and sasl.mechanism.
setProviderProperties(ks, "security.protocol", "SASL SSL","sasl.mechanism", "SCRAM-SHA-512");
Input Arguments

stream — Object connected to Kafka topic
kafkaStream object

Object connected to a Kafka topic, specified as a kafkaStream object.

propname — Name of Kafka-specific property
string

Kafka-specific properties, specified as name-value pairs. Specify property pairs as
Namel,Valuel,...,NameN,ValueN, where Name is the argument name and Value is the
corresponding value. Use commas to separate each name and value, and enclose property name in
quotes.

10-81

10 Streaming Functions

10-82

Example: "security.protocol", "SASL SSL","sasl.mechanism", "SCRAM-SHA-512" sets the
Kafka configuration property security.protocol to SASL SSL and the property sasl.mechanism
to SCRAM-SHA-512.

propval — Value of Kafka-specific property
name-value arguments

Value of Kafka-specific property, specified as . Specify property pairs as

Namel,Valuel, ..., NameN,ValueN, where Name is the argument name and Value is the
corresponding value. Use commas to separate each name and value, and enclose property name in
quotes.

Example: "security.protocol","SASL SSL","sasl.mechanism", "SCRAM-SHA-512" sets the
Kafka configuration property security.protocol to SASL SSL and the property sasl.mechanism
to SCRAM-SHA-512.

Version History
Introduced in R2022a

See Also
kafkaStream | getProviderProperties

Topics
“Connect to Secure Kafka Cluster” on page 11-9

seek

seek

Package: matlab.io.stream.event

Set read position in event stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

offset
offset

seek(stream,position)
seek(stream,position,origin)

Description

offset = seek(stream,position) sets the read position of event stream stream to position.
You can specify a numeric absolute position or a relative position, such as "Beginning" or "End" for
the start or end of the stream, respectively. seek returns the position from which the next read
operation occurs.

offset = seek(stream,position,origin) moves the read position of an event stream
position number of events relative to the specified origin.

Examples

Seek to Beginning of Event Stream
Create a TestStream object to read from and write events to an event stream hosted by MATLAB.
ts = testStream;

Write sample timetable data to the event stream.

load indoors
writetimetable(ts,indoors)

Read data from the stream. The stream contains 60 events, but the stream by default has a window
size of 100. Therefore, readtimetable reads the entire stream in a single read. The read position is
one position past the end of the stream.

tt = readtimetable(ts);

Move the read position back to the first event.

seek(ts,"Beginning");

10-83

10 Streaming Functions

Seek to Position Relative to End of Event Stream

Create an InMemoryStream object to read from and write events to an event stream hosted by
MATLAB. Configure the object to read 10 events at a time.

numRows = 10;
is = inMemoryStream(Rows=numRows) ;

Write timetable data to the event stream.

load indoors
writetimetable(is,indoors)

Move the read position 10 rows back from the end position.
seek(is,-numRows + 1,"End");

Read the last 10 events from the stream.

tt = readtimetable(is)

tt =

10x2 timetable

Time Humidity AirQuality
2015-11-17 13:00:19 37 79
2015-11-17 14:13:31 37 80
2015-11-17 15:26:43 37 79
2015-11-17 16:39:55 37 77
2015-11-17 17:53:07 37 79
2015-11-17 19:06:19 37 79
2015-11-17 20:19:31 37 80
2015-11-17 21:32:43 37 81
2015-11-17 22:45:55 37 79
2015-11-17 23:59:07 35 79

Input Arguments

stream — Object connected to event stream
KafkaStream object | InMemoryStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream, InMemoryStream, or
TestStream object.

position — Position in event stream
integer | datetime scalar | "Beginning" | "End" | "Current"

Position in an event stream at which the next read starts, specified as an absolute or relative position.

Absolute Position

Specify one of these values:

10-84

seek

* A positive integer indicating the number of events from the start of the event stream that the read
position moves to. You cannot specify an integer greater than the length of the stream. For
example, seek(stream,5) moves the read position to the fifth event in the stream.

* A datetime scalar indicating the event timestamp that the read position moves to. If the stream
contains no event corresponding to the specified date or time, the stream position moves to the
first time after the specified time. For example,
seek(stream,datetime(2022,5,13,16,34,26)) moves the read position to the event that
has a timestamp of 13-May-2022 16:34:26.

Relative Position
Specify one of these values:

* "Beginning" — First event available in stream. For example: seek(stream, "Beginning").
* "End" — Just past the last event in the stream. For example: seek(stream, "End").
o "Current" — Just past the current event in the stream. For example: seek(stream, "End").

» Ifyou specify origin, a positive or negative integer indicating the number of events relative to
that origin. For example, seek(stream, -10, "End") moves the read position 10 positions from
the last event in the stream.

position must not exceed either end of the stream relative to origin. If originis "End", then
position must be negative. If originis "Beginning", then position must be positive.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
string | datetime

origin — Origin that read position is relative to
"Beginning" | "End" | "Current"

Origin that the read position specified by position is relative to, specified as one of these values:

* "Beginning" — Read position is relative to the first event available in stream.
* "End" — Read position is relative to the last event in the stream.
* "Current" — Read position is relative to the current event in the stream.

Data Types: string | char

Version History
Introduced in R2022b

See Also
kafkaStream | inMemoryStream | testStream| readtimetable |writetimetable | preview |
seek

10-85

10 Streaming Functions

10-86

setvartype

Package: matlab.io.stream.event

Set data types used to import and export variables to stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

setvartype(opts,selection, type)
setvartype(opts,selection, type)

opts
opts

Description

opts = setvartype(opts,selection,type) sets the data types of all variables in the object
opts to the data type specified by type.

* Ifoptsisan ImportOptions object, then setvartype returns an ImportOptions object.

* Ifoptsisan ExportOptions object, then setvartype returns an ExportOptions object.
opts = setvartype(opts,selection,type) sets the data types of the variables specified by
selection to the data types specified by type in the object opts.

Examples

Set Data Type of Imported Variables in Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic CoolingFan.

Create an object to connect to Kafka streaming data.

ks = kafkaStream("kafka.host.com",9092,"CoolingFan")
Create an import options object from the KafkaSt ream object.
io = detectImportOptions(ks)

io =

ImportOptions with properties:

VariableNames: ["vMotor" "wMotor" "Tmass"]
VariableTypes: ["double" "double" "double" 1
KeyVariable: "key"
SelectedVariableNames: ["vMotor" "wMotor" "Tmass"]

Examine data types of the variables.

disp([io.VariableNames' io.VariableTypes'])

setvartype

"vMotor" "double"
"wMotor" "double"
"Tmass" "double"
"ExternalTempAnomaly" "double"
"FanDragAnomaly" "double"
"VoltageSourceAnomaly" "double"
"FanRow" "double"
"FanColumn" "double"
"FanID" "double"
"GroupID" "double"
"key" "string"

Change the data types of vMotor and wMotor variables to int32.

io setvartype(io, {"vMotor", "wMotor"},"int32")
io =

ImportOptions with properties:

VariableNames: ["vMotor" "wMotor" "Tmass" -]

VariableTypes: ["int32" "int32" "double" . 1
KeyVariable: "key"

SelectedVariableNames: ["vMotor" "wMotor" "Tmass" -]

Import the variables with their updated types using readtimetable.

tt = readtimetable(ks,io);

Alternatively, you can set the ImportOptions property of the stream object and the use
readtimetable.

ks.ImportOptions = io;
tt = readtimetable(ks);

Set Data Type of Exported Variables in Event Stream

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has the topics Triangles and numericTriangles.

Create a KafkaStream object connected to the Triangles topic.
inKS = kafkaStream("kafka.host.com",9092,"Triangles");

Read events from the Triangles topic into a timetable. Preview the data by viewing the first row.
The a, b, and c triangle side lengths are stored as strings.

tt = readtimetable(inKS);
row = tt(1,:)

row =
1x3 timetable

timestamp a b C

10-87

10 Streaming Functions

03-Sep-2022 "15" “31" “36"

Use detectExportOptions to generate an ExportOptions object from the Kafka stream object.
The function obtains the types used to export the variables from the first row of the timetable.

opts = detectExportOptions(inKS, row);

Use getvartype to confirm that the side length variables are currently exported to the stream as
strings.

type = getvartype(opts,["a" "b" "c"]);
type =
1x3 string array

"string" "string" "string"

Update the export options so that the side lengths are exported as double values. Confirm the
updated options by using getvartype.

opts = setvartype(opts,["a","b","c"], " "double");

[name, type] = getvartype(opts);
fprintf("%s: %s\n", [name; type])

a: double
b: double
c: double

Connect to the stream to export data to numericTriangles.

outKS = kafkaStream("kafka.host.com",9092, "numericTriangles",
ExportOptions=opts)

outKS =
KafkaStream with properties:

Topic: "numericTriangles”
Group: "85c42e39-695d-467a-86f0-f0095792e7de"
Order: EventTime
Host: "kafka.host.com"
Port: 9092
ConnectionTimeout: 30
RequestTimeout: 61
ImportOptions: "None"
ExportOptions: "Source: string"
PublishSchema: "true"
WindowSize: 50
KeyVariable: "key"
KeyEncoding: "utfl16"

KeyType: "text"
KeyByteOrder: "BigEndian"
BodyEncoding: "utf8"

BodyFormat: "JSON"
ReadLimit: "Size"
TimestampResolution: "Milliseconds"

setvartype

Export the timetable to the new stream. The triangle side lengths in this stream are of type double.

writetimetable(outKS,tt);

Input Arguments

opts — Event stream options
ImportOptions object | ExportOptions object

Event stream options, specified as an ImportOptions or ExportOptions object. The opts object
contains properties that control the data import/export process, such as variable names and types.

selection — Selected variables
character vector | string scalar | cell array of character vectors | string array

Selected variables, specified as a character vector, string scalar, cell array of character vectors, or
string array.

Variable names must be a subset of the names recognized by the opts object.

Example: 'FanID'

Example: "FanID"

Example: {'FanID', 'vMotor'}

Example: ["FanID" "vMotor"]

Data Types: char | string | cell

type — New data type of variable
string scalar

New data type of variable, specified as a string scalar containing a valid MATLAB data type name.
The variable type designates the data type to use when importing or exporting the variable. Use one
of the data types listed in this table.

Data MATLAB Data Type
Text "char" or "string"

10-89

10 Streaming Functions

10-90

Data

MATLAB Data Type

Numeric

"single", "double", "int8", "int16",
"int32", "int64", "uint8", "uintl16",
"uint32", or "uint64"

Undefined floating-point numbers NaN, -Inf,
+Inf are only valid for single and double data
types. Therefore, when you change the type of
floating-point data to an integer, the importing/
exporting function converts the undefined
floating-point numbers to valid integers. For
example, when converting to the "uint8" data

type:

* NaN is converted to 0.

* -Infisconverted to intmin("int8").

* +Infis converted to intmax("int8").
The same conversion process applies to all the

integer data types: int8, int16, int16, int32,
int64, uint8, uint16, uint32, or uint64.

Logical

"logical”

Example: io = setvartype(io,"vMotor","int32") changes the data type of the event stream

variable vMotor to int32.

Data Types: string

Version History
Introduced in R2022b

See Also

getvartype | detectImportOptions | detectExportOptions

start

start

Package: matlab.io.stream.event

Start processing event streams using local test server

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

start(esp)
start(esp,port,host)

Description

start(esp) starts processing event streams using a local test server (development version of
MATLAB Production Server) running at the default hostname localhost and port number 9910.
Asynchronous event processing started with the start function continues until either the processor
reaches the end of the stream or you explicitly call stop.

Note Before starting event processing with start, you must start the local test server with
startServer.

start(esp,port,host) specifies the port number and the hostname of the machine on which the
local test server is running.

Examples

Start Processing Event Streams Using Local Test Server

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a stateful streaming analytic function recamanSum and initialization
function initRecamanSum.

Create a KafkaStream object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create an EventStreamProcessor object that runs the recamanSum function and is initialized by
the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum) ;

Start the local test server, which also opens the Production Server Compiler app.

10-91

10 Streaming Functions

10-92

startServer(esp);

Start the test server from the app by clicking Test Client and then Start. For an example on how to
use the app, see “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK).

Navigate back to the MATLAB command prompt to start processing events.

start(esp);

In the Production Server Compiler app, the test server receives data.

After you finish testing the processing of events, use the stop function to stop event processing and
the stopServer function to shut down the server.

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

port — Port number on which test server is running
integer in range [0, 65,535]

Port number on which the test server is running, specified as an integer in the range [0, 65,535].
Example: 9920

host — Hostname of machine on which local test server is running
string | character vector

Hostname of machine on which the local test server is running, specified as a string or character
vector.

Example: '144.213.5.7"' or 'localhost’
Data Types: string | char

Version History
Introduced in R2022b

See Also
stop | startServer | stopServer | eventStreamProcessor

Topics
“Test Streaming Analytic Function Using Local Test Server” on page 11-12

startServer

startServer

Package: matlab.io.stream.event

Start local test server

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

startServer(esp)
startServer(esp,ExtraFiles=files)

Description

startServer(esp) launches a local test server (development version of MATLAB Production
Server) that simulates the production environment so that you can test event processing.

startServer generates a MATLAB project file for the Production Server Compiler app. In
addition to simulating production with this file on a local test server, you can use the generated
project file to create a CTF archive.

startServer(esp,ExtraFiles=files) adds additional files to the CTF archive when starting the
local test server.

Examples

Process Event Streams Using Local Test Server

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a streaming analytic function recamanSum and a function
initRecamanSum to initialize persistent state.

Create a KafkaStream object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create an EventStreamProcessor object that runs the recamanSum function, which is initialized
by the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum);

Start the local test server, which also opens the Production Server Compiler app.

Note To use the test server, you require MATLAB Compiler SDK.

10-93

10 Streaming Functions

10-94

startServer(esp);
Once the app opens, you must start the test server manually.

To start the test server from the app, click Test Client and then Start. For an example on how to use
the app, see “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK).

Navigate back to the MATLAB command prompt to start processing events.

start(esp);

Using the MATLAB editor, you can set breakpoints in the recamanSum function to examine the
incoming streaming data when you start the server.

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

files — Additional files to include in archive
character vector | string scalar | string array

Additional files to include in the generated archive, specified as a character vector or string scalar for
a single file, or as a string array for multiple files.

Extra files are necessary only if you plan to use the generated project file to deploy a CTF archive to
MATLAB Production Server. For other ways to create deployable archives, see the package and
streamingDataCompiler functions.

Example: archive = startServer(esp,"ExtraFiles"=["data.mat", "/schema/registry/
schema. json"]) includes the files data.mat and schema. json in the generated deployable
archive.

Data Types: char | string

Version History
Introduced in R2022b

See Also
eventStreamProcessor | stopServer | start | stop

Topics
“Test Streaming Analytic Function Using Local Test Server” on page 11-12

streamingDataCompiler

streamingDataCompiler

Package stream processing function into deployable archive

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

filePath = streamingDataCompiler(streamFcn,inStream,outStream)

filePath = streamingDataCompiler(streamFcn,inStream,outStream,Name=Value)
Description

filePath = streamingDataCompiler(streamFcn,inStream,outStream) creates a MATLAB
Compiler SDK project file and opens the Production Server Compiler app. Use this app to package
the streaming function into a deployable archive for MATLAB Production Server.

streamingDataCompiler returns the full path to the project file.

filePath = streamingDataCompiler(streamFcn,inStream,outStream,Name=Value) sets
additional options for packaging the function.

For example, if you specify QutputType="Archive", the streamingDataCompiler function
returns a deployable archive (CTF file) instead of a project file.

Examples

Package Streaming Analytic Function for Deployment to MATLAB Production Server

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a streaming analytic function recamanSum and a function
initRecamanSum to initialize persistent state.

Create a KafkaStream object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create another KafkaStream object to write the results of the streaming analytic function to a
different topic called RecamanSequenceResults.

outks = kafkaStream("kafka.host.com",9092, "RecamanSequenceResults");
Package the streaming analytic function recamanSum into a deployable archive. Since the analytic

function uses the state initialization function initRecamanSum, also specify the StateStore
property as an input argument.

10-95

10 Streaming Functions

file = streamingDataCompiler(@recamanSum, ks, outKsS,
StateStore="KVStore",InitialState=@initRecamanSum)

file =
"J:\recamanSum.prj"

The package function generates a MATLAB project file based on the eventStreamProcessor
object, returns the path to this file, and opens this project file with the Production Server Compiler
app. The project file contains values for:

* The streaming analytic function, recamanSum.m

* The entry point function, streamfcn.m

* The deployable archive, RecamanSum.ctf

To modify the list of deployed functions or the name of the generated archive, see “Customize
Application and Its Appearance” (MATLAB Compiler SDK).

4\ Production Server Compiler - recaman5Surm.prj — O
COMPILER &
E:]ZI 3 ﬁ %) streamfcnm ek @ (I::%, W
@ Deployable Archive with Excel Integration
MNew Open Save Settings Test = Package
* Project = Client
FILE TYPE EXPORTED FUNCTIONS SETTINGS TEST @ PACKAGE

Archive information

recamanSum

Additional files required for your archive to run

fﬂinitﬂecamanSum... D rdkafkalog.prop.. f.;':I recamansurm.m H recamanSumcon...

Files packaged for redistribution

@ cellector.properti... @ kafka-cennector-... @ kafka-connector-... @ legdj.properties
@ connector.proper... @ kafka-cennector-... @ kafka.properties @ readme.txt

@ kafka-connector-... @ kafka-cennector-... @ kafka.properties.t... @ recamanSum.ctf

In the Production Server Compiler, click Package to generate the deployable archive. You can
deploy the generated archive to MATLAB Production Server. For more information on deploying to
MATLAB Production Server, see “Deploy Archive to MATLAB Production Server”.

Input Arguments

streamFcn — Streaming analytic function
function handle | string | character vector

10-96

streamingDataCompiler

Streaming analytic function, specified as a function handle, string, or character vector.

Data Types: function handle | string | char

inStream — Event stream from which streaming analytic function reads events
stream connector object

Event stream from which the streaming analytic function reads events, specified as a stream
connector object, such as KafkaStream or TestStream.

outStream — Event stream to which streaming analytic function writes events
stream connector object

Event stream from which the streaming analytic function reads events, specified as a stream
connector object, such as KafkaStream or TestStream. InMemoryStream objects are not
supported.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, .. .,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Example: streamingDataCompiler(streamFcn,inStream,outStream,QutputFolder="J:\")
Compile Configuration Options

ArchiveName — Name of generated deployable archive
streamFcn (default) | string | character vector

Name of the generated deployable archive, specified as a string or character vector.
Data Types: char | string

OutputType — File type
Project (default) | Archive

Type of file created by the streamingDataCompiler function, specified as one of these values.

* Project — Creates a productionServerCompiler project file and launches the Production
Server Compiler app. You can create a CTF file using the Production Server Compiler app.

* Archive — Creates a CTF file.
Data Types: char | string

ExtraFiles — Additional files to include in archive
character vector | string scalar | string array

Additional files to include in the generated archive, specified as a character vector or string scalar for
a single file or as a string array for multiple files.

Example: ExtraFiles=["data.mat","/schema/registry/schema.json"] includes the files
data.mat and schema. json in the generated deployable archive.

Data Types: char | string

OutputFolder — Location of generated file
current folder (default) | string | character vector

10-97

10 Streaming Functions

10-98

Location of the generated file, specified as a string or character vector.
Example: OutputFolder="'J:\" saves the generated file in J:\.
Data Types: string | char

OpenProject — Flag to automatically open project in MATLAB
true (default) | false

Flag to automatically open the project in MATLAB, specified as logical true or false. This property
is incompatible with OutputType="Archive".

Data Types: logical

Execution Configuration Options

InitialState — Function that creates initial state for streaming analytic function
function handle | string | character vector

Function that creates the initial state for the streaming analytic function, specified as either a
function handle, string, or character vector.

Data Types: function handle | char | string

StateStore — Persistent storage connection name
string | character vector

Persistent storage connection name, specified as a string or character vector. You must specify a
StateStore when using InitialState or when using a stateful stream function. The connection
name must be known to the MATLAB Production Server instance to which the archive will be
deployed. For more information on using a data cache for persistent storage, see “Data Caching
Basics”.

Data Types: char | string

GroupByKey — Flag to call streaming function with events that have same key
false (default) | true

Flag to call the streaming function with events that have same key, specified as a logical true or
false. Setting this flag to true splits an event window into subwindows with homogeneous keys and
calls the streaming function once per subwindows.

Data Types: logical

Version History
Introduced in R2022b

See Also
eventStreamProcessor | package

Topics
“Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17

stop

stop

Package: matlab.io.stream.event

Stop processing event streams using local test server

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

stop(esp)

Description

stop(esp) stops processing event streams using a local test server (development version of
MATLAB Production Server). Asynchronous event processing started with the start function
continues until either the processor reaches the end of the stream or there is an explicit call to the
stop function.

Examples

Stop Processing Event Streams

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a stateful streaming analytic function recamanSum and initialization
function initRecamanSum.

Create a KafkaStream object connected to the RecamanSequence topic.

ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create an EventStreamProcessor object that runs the recamanSum function.
esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum);

Start the test server, which also opens the Production Server Compiler app.
startServer(esp);

To start the test server from the app, click Test Client and then Start. For an example on how to use
the app, see “Test Client Data Integration Against MATLAB” (MATLAB Compiler SDK).

Navigate back to the MATLAB command prompt to start processing events.

start(esp);

In the Production Server Compiler app, the test server receives data.

10-99

10 Streaming Functions

10-100

From the MATLAB command prompt, stop the event processing.

stop(esp);

Then, you can shut down the server using the stopServer function or by clicking Stop in the app
UL

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

Version History
Introduced in R2022b

See Also
start | stopServer | eventStreamProcessor | startServer

Topics
“Test Streaming Analytic Function Using Local Test Server” on page 11-12

stop

stop

Package: matlab.io.stream.event

Stop processing event streams from Kafka topic

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax
stop(ks)

Description

stop(ks) stops processing event stream data from a Kafka topic and shuts down any external
processes interacting with the stream.

Examples

Stop Streaming Data from Kafka Topic

Assume that you have a Kafka server running at the network address kafka.host.com:9092. This
server has a topic RecamanSequence that contains numbers in Recaman's sequence.

Create a KafkaStream object for reading event stream data from the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Read the first 50 rows from the stream.

tt = readtimetable(ks)

tt =

50x2 timetable

timestamp R key
27-Jun-2022 18:37:52 0 "o"
27-Jun-2022 18:37:53 1 "1
27-Jun-2022 18:37:54 3 "2
27-Jun-2022 18:37:55 6 "3
27-Jun-2022 18:37:56 2 "4
27-Jun-2022 18:37:57 7 "5
27-Jun-2022 18:37:58 13 "6"
27-Jun-2022 18:37:59 20 A
27-Jun-2022 18:38:34 37 "42"

10-101

https://en.wikipedia.org/wiki/Recam%C3%A1n%27s_sequence

10 Streaming Functions

27-Jun-2022 18:38:35 80 “43"
27-Jun-2022 18:38:36 36 "44"
27-Jun-2022 18:38:37 81 "45"
27-Jun-2022 18:38:38 35 “46"
27-Jun-2022 18:38:39 82 47"
27-Jun-2022 18:38:40 34 "48"
27-Jun-2022 18:38:41 83 "49"

Preview the next 8 rows in the stream. The read position is set immediately after the last row read
from the stream.

preview(ks)
ans =

8x2 timetable

timestamp R key
27-Jun-2022 18:38:42 33 "50"
27-Jun-2022 18:38:43 84 "51"
27-Jun-2022 18:38:44 32 "52"
27-Jun-2022 18:38:45 85 "53"
27-Jun-2022 18:38:46 31 "54"
27-Jun-2022 18:38:47 86 "55"
27-Jun-2022 18:38:48 30 "56"
27-Jun-2022 18:38:49 87 "57"

Stop processing the stream.

stop(ks)

Input Arguments

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

Version History
Introduced in R2022b

See Also
kafkaStream | readtimetable |writetimetable | preview | seek

Topics
“Test Streaming Analytic Function Using Local Test Server” on page 11-12

10-102

stopServer

stopServer

Package: matlab.io.stream.event

Shut down local test server

Note This function requires Streaming Data Framework for MATLAB® Production Server™ and
MATLAB Compiler SDK™.

Syntax

stopServer(esp)

Description

stopServer(esp) shuts down the local test server (development version of MATLAB Production
Server) used to simulate event processing in a production environment.

Examples

Stop Local Test Server Used to Process Events

Assume that you have a Kafka server running at the network address kafka.host.com:9092 that
has a topic RecamanSequence.

Also assume that you have a stateful streaming analytic function recamanSum and initialization
function initRecamanSum.

Create a KafkaStream object connected to the RecamanSequence topic.
ks = kafkaStream("kafka.host.com",9092, "RecamanSequence");

Create an EventStreamProcessor object that runs the recamanSum function, which is initialized
by the initRecamanSum function.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum) ;

Start the local test server, which also opens the development version of MATLAB Production Server in
the Production Server Compiler app.

startServer(esp);
You can then use the start and stop functions to start and stop event processing, respectively.
stop causes the client of the EventStreamProcessor object to stop sending events from the

stream to the local test server, but it does not shut down the server. After you finish testing the
processing of events, stop the test server by calling stopServer.

10-103

10 Streaming Functions

stopServer(esp);

Input Arguments

esp — Object to process event streams
EventStreamProcessor object

Object to process event streams, specified as an EventStreamProcessor object.

Version History
Introduced in R2022b

See Also
startServer | start | stop | eventStreamProcessor | execute

Topics
“Test Streaming Analytic Function Using Local Test Server” on page 11-12

10-104

testStream

testStream

Create connection to event stream hosted by MATLAB with schema processing applied

Note This object requires Streaming Data Framework for MATLAB® Production Server™.

Description

The testStream function creates a TestStream object, which you can use to test reading from and
writing to event streams hosted by MATLAB. TestStream objects store events in MATLAB variables,
which are exported to event streams based on the data type values specified by the ExportOptions
property. TestStream applies the standard configurable schema processing when reading and
writing timetable data. Use this object to test your schema management before deployment, without
requiring a streaming service host. The data in a TestStream object disappears when you exit
MATLAB.

Use TestStream to develop your streaming analytic function without having to connect to or
consume resources from a streaming service such as Kafka. TestStream stores data using MATLAB
memory space, so use this object with finite-size data sets. Because the data is stored in MATLAB,
TestStream objects typically stream data faster than streams that have data stored on a network or
file system.

Creation

Syntax

testStream
testStream(Name=Value)

ts
ts

Description

ts

testStream creates an object connected to an event stream hosted by MATLAB.

ts = testStream(Name=Value) specifies event stream options using one or more Name=Value
arguments. Name can also be a property name on page 10-58, with Value as the corresponding value.
You can specify several name-value arguments in any order as Namel=Valuel,...,.NameN=ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Duration — Timestamp span in event window
0 (default) | duration scalar

10-105

10 Streaming Functions

10-106

Timestamp span in the event window, specified as a duration scalar. Duration determines the events
that the readtimetable function returns based on their timestamp. Duration specifies the
difference between the last and first timestamps of events in the event window.

You can specify either the Duration property or the Rows property, but not both.

Example: Duration=minutes (1) specifies that each call to readtimetable returns a timetable
that has one minute's worth of events, where the timestamp of the last event is no more than one
minute later than the timestamp of the first event.

Data Types: duration

Rows — Number of events in event window
100 (default) | positive integer

Number of events in the event window, specified as a positive integer. Rows specifies the number of
rows that a call to the readtimetable function returns. If there are less than the number of
specified rows available for reading, then readtimetable times out and returns an empty timetable.

You can specify either the Duration property or the Rows property, but not both.
Example: Rows=500 specifies that each call to readtimetable returns a timetable with 500 rows.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

Properties

KeyVariable — Name of key variable
key (default) | string scalar | character vector

Name of the key variable in the event stream, specified as a string scalar or character vector.

Data Types: string | char

Name — Event stream name
string scalar | character vector

Name of the event stream, specified as a string scalar or character vector. This property is provided
for compatibility with other stream objects. If you do not specify a name, the testStream function
generates one when you create the TestStream object.

Example: CoolingFan

Data Types: string | char

WindowSize — Event window size
50 (default) | duration scalar | positive integer

This property is read-only.

Event window size, specified by a fixed amount of time (using the Duration argument) or a fixed
number of messages (using the Rows argument).

Data Types: duration | single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

TimestampResolution — Unit of event timestamp
"Milliseconds" (default) | "Seconds" | "Minutes" | "Hours" | "Days"

testStream

Unit of event timestamp, specified as one of these values:

*+ "Milliseconds"
* "Seconds"

* "Minutes"

* "Hours"

* "Days"

Interpret the event timestamp as the number of corresponding units before or after the Unix epoch.

Data Types: string | char

ReadLimit — Wait strategy
"Size" (default) | "Time"

Strategy to wait for a response from the stream, specified as one of these values:

+ "Size" — Client prioritizes filling the event window. Using this strategy, the client might wait
longer than the RequestTimeout time period as long as it is still receiving the expected number
of messages. The default number of messages is 50. If the client receives no messages within the
RequestTimeout time period, it no longer waits.

* "Time" — Client strictly adheres to the RequestTimeout limit, even if it has not received the
expected number of messages. RequestTimeout specifies the amount of time the stream object
waits between receiving events. If the stream is actively receiving data, it does not time out during
that operation.

Note This object does not implement the ReadLimit property and does not have a
RequestTimeout property. It is provided for compatibility with other stream connector objects. By
setting the wait strategy in this object, you can more easily update your code to switch between
objects that do implement this property, such as KafkaStream.

Import and Export Schema

ImportOptions — Rules for transforming stream events into MATLAB data
ImportOptions object

Rules for transforming stream events into MATLAB data, specified as an ImportOptions object. This
object controls the import of stream events into MATLAB.

ExportOptions — Rules for transforming MATLAB data into stream events
ExportOptions object

Rules for transforming MATLAB data into stream events, specified as an ExportOptions object. This
object controls the export of MATLAB data into streams.

PublishSchema — Flag to indicate whether export schema is written to output stream
true (default) | false

Flag to indicate whether the export schema is written to the output stream, specified as a logical
scalar.

10-107

10 Streaming Functions

The schema is embedded in each event, which can significantly increase the size of the event. If
downstream applications do not require the schema, set this flag to false to reduce the number of
bytes in your stream.

Data Types: logical
Event Key and Body Encoding

BodyEncoding — Character encoding format for bits in event body
utf8 (default) | uint8 | utf1l6 | baseb4

Character encoding format used to interpret the bits in the event body, specified as one of the
following:

utf8 — UTF-8 encoding format
utfle — UTF-16 encoding format
* base64— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

This property determines the size and encoding of the bytes used in the event body, which are in the
format specified by BodyFormat.

BodyFormat — Format of bytes in event body
JSON (default) | Array | Text | Binary

Format of bytes in event body, specified as one of the following:

* JSON — JSON string

* Array — MATLAB array
* Text — String data

* Binary — Binary data

Depending on the encoding specified by BodyEncoding, bytes can be larger than eight bits.

KeyByteOrder — Order for storing bits in event key
BigEndian (default) | LittleEndian | MatchHost | NotApplicable

Order for storing bits in the event key, specified as one of the following.

* LittleEndian — Least significant bit is stored first
* BigEndian — Most significant bit is stored first

* MatchHost— Bits are stored in the same order as is used by the host computer on which the
streaming data framework is running

* NotApplicable — Not an integer key
This property is applicable only for integer keys and not applicable to floating point or text keys.

KeyEncoding — Character encoding format for bits in event key
uint8 (default) | utfl6 | utf8 | base64

Character encoding format used to interpret the bits in an event key, specified as one of the following:

10-108

testStream

* utf8 — UTF-8 encoding format

e utflé — UTF-16 encoding format

* base64— Base 64 encoding format

* uint8 — Eight-bit unsigned binary bytes

If KeyEncoding is utf8 or utf16, then the KeyType property must be text. If KeyEncoding is
base64 or uint8, then KeyType must be one of the numeric encoding formats.

KeyType — Character encoding scheme for bytes in event key
text (default) | utf1l6 | int8 | uint8 | int1l6 | uintl6 | int32 | uint32 | int64 | uint64 |
single | double

Character encoding scheme used to interpret the bytes in an event key, specified as one of these
values:

* uint8 — One-byte unsigned integer

* int8 — One-byte signed integer

* uintl6 — Two-byte unsigned integer

* 1int16 — Two-byte signed integer

* uint32 — Four-byte unsigned integer

* int32 — Four-byte signed integer

* uint64 — Eight-byte unsigned integer

* int64 — Eight-byte signed integer

* single — Single-precision IEEE 754 floating point number
* double — Double-precision IEEE 754 floating point number
* text — String

If KeyType is text, then the KeyEncoding property must be either utf8 or utf16. If KeyType is
any of the other numeric encoding formats, then KeyEncoding must be either base64 or uints8.

Object Functions

readtimetable Read timetable from event stream
writetimetable Write timetable to event stream

seek Set read position in event stream

preview Preview subset of events from event stream
identifyingName Event stream name

detectImportOptions Create import options based on event stream content
detectExportOptions Create export options based on event stream content

Examples

Write and Preview Events for Test Stream

Create a TestStream object to read from and write events to an event stream hosted by MATLAB.
ts = testStream

t =

10-109

10 Streaming Functions

TestStream with properties:

Name:
ImportOptions:
ExportOptions:
PublishSchema:

WindowSize:
KeyVariable:
KeyEncoding:

KeyType:
KeyByteOrder:
BodyEncoding:
BodyFormat:
ReadLimit:

TimestampResolution:

"8ee84682-dcb6-4dc7-al0a-873f80dc5f98"
“"None"
"Source:
"true"
100

n keyll
"uint8"
"text"
"BigEndian"
"utf8"

"JSON"

"Size"
"Milliseconds"

function eventSchema"

Write sample timetable data to the event stream.

load indoors
writetimetable(ts,indoors)

Preview data from the timetable. The timetable data has no key column, but writetimetable
generates an empty key column in the stream by default. This makes it easier to transition your code
from using a TestStream object to a KafkaStream object, which includes this key column to
identify the event source.

preview(ts)
ans =

8x3 timetable

timestamp Humidity AirQuality key
15-Nov-2015 00:00:24 36 80 "
15-Nov-2015 01:13:35 36 80 "
15-Nov-2015 02:26:47 37 79 "
15-Nov-2015 03:39:59 37 82 "
15-Nov-2015 04:53:11 36 80 "
15-Nov-2015 06:06:23 36 80 "
15-Nov-2015 07:19:35 36 80 "
15-Nov-2015 08:32:47 37 80 "

Version History
Introduced in R2022b

See Also
kafkaStream | inMemoryStream

Topics
“Streaming Data Framework for MATLAB Production Server Basics” on page 11-2

10-110

writetimetable

writetimetable

Package: matlab.io.stream.event

Write timetable to event stream

Note This function requires Streaming Data Framework for MATLAB® Production Server™.

Syntax

writetimetable(stream,tt)

writetimetable(ks,tt,MissingTopic=action)

Description

writetimetable(stream, tt) writes the timetable tt to the end of the event stream stream.
writetimetable converts rows of a timetable into events in an event stream, where:

* The column names in the timetable become variable names in the event body.
* The values in each event row become the values of those variables.
* The row timestamp becomes the event timestamp.

You can append data to a stream but cannot modify data that is already written to a stream.

writetimetable(ks,tt,MissingTopic=action) specifies whether to create a topic when
writing a timetable to an event stream hosted by Kafka or fail the write operation when the topic is
missing. If the Kafka cluster that you are writing to is configured to auto-create topics, specifying
action has no effect.

Examples

Write Timetable to Event Stream

Load air quality data and weather measurements into a timetable.

load indoors

Create an InMemoryStream object to connect to an event stream hosted by MATLAB.
i = inMemoryStream;

Write the timetable to the event stream.

writetimetable(i,indoors)

Preview the data in the event stream.

preview(i)

10-111

10 Streaming Functions

ans =

8x2 timetable

Time Humidity AirQuality
2015-11-15 00:00:24 36 80
2015-11-15 01:13:35 36 80
2015-11-15 02:26:47 37 79
2015-11-15 03:39:59 37 82
2015-11-15 04:53:11 36 80
2015-11-15 06:06:23 36 80
2015-11-15 07:19:35 36 80
2015-11-15 08:32:47 37 80

Write Timetable to Stream Hosted by Kafka
Load air quality data and weather measurements into a timetable.
load indoors

Assume that you have a Kafka host running at network address kafka.host.com:9092. Create a
KafkaStream object that processes 10 stream events at a time.

ks = kafkaStream("kafka.host.com",9092,"IndoorTemp",Rows=10);
Create the IndoorTemp topic and write the timetable to it.
writetimetable(ks,indoors)

Read the first 10 events from the stream.

ttl

readtimetable(ks)
ttl =

10x3 timetable

timestamp Humidity AirQuality key
15-Nov-2015 00:00:24 36 80 "
15-Nov-2015 01:13:35 36 80 "
15-Nov-2015 02:26:47 37 79 "
15-Nov-2015 03:39:59 37 82 "
15-Nov-2015 04:53:11 36 80 "
15-Nov-2015 06:06:23 36 80 "
15-Nov-2015 07:19:35 36 80 "
15-Nov-2015 08:32:47 37 80 "
15-Nov-2015 09:45:59 37 79 "
15-Nov-2015 10:59:11 36 80 "

Read the next 10 events from the stream.

tt2 = readtimetable(ks)

10-112

writetimetable

tt2 =

10x3 timetable

timestamp Humidity AirQuality key
16-Nov-2015 00:24:22 36 81 "
16-Nov-2015 01:37:34 37 80 "
16-Nov-2015 02:50:46 36 79 "
16-Nov-2015 04:03:58 37 80 "
16-Nov-2015 05:17:09 37 81 "
16-Nov-2015 06:30:21 36 79 "
16-Nov-2015 07:43:33 37 79 "
16-Nov-2015 08:56:45 37 79 "
16-Nov-2015 10:09:57 37 85 "
16-Nov-2015 11:23:09 37 80 "

Input Arguments

stream — Object connected to event stream
KafkaStream object | InMemoryStream object | TestStream object

Object connected to an event stream, specified as a KafkaStream, InMemoryStream, or
TestStream object.

tt — Input timetable
timetable

Input timetable.

ks — Object connected to Kafka stream topic
KafkaStream object

Object connected to a Kafka stream topic, specified as a KafkaStream object.

action — Action to take if topic does not exist
"create" (default) | "fail"

Action to take if the topic to write the timetable to does not exist, specified as one of the following
values:

+ "create" — Creates new topic, if you have the required permissions on the Kafka host.
+ "fail" — Does not create a new topic and the write operation fails.

Data Types: char | string

Version History
Introduced in R2022b

See Also
readtimetable | kafkaStream | inMemoryStream | testStream

10-113

10 Streaming Functions

Topics
“Process Kafka Events Using MATLAB” on page 11-5

10-114

Streaming Topics

* “Streaming Data Framework for MATLAB Production Server Basics” on page 11-2

* “Process Kafka Events Using MATLAB” on page 11-5

* “Connect to Secure Kafka Cluster” on page 11-9

* “Test Streaming Analytic Function Using Local Test Server” on page 11-12

* “Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17
* “Obtain Kafka Event Stream Log Files” on page 11-21

11 Streaming Topics

Streaming Data Framework for MATLAB Production Server
Basics

11-2

Use Streaming Data Framework for MATLAB Production Server to read from and write to event
streaming platforms, such as Kafka. Using this framework, you can:

1 Develop a streaming analytic function in MATLAB that filters, transforms, records, or processes
event stream data.

2 Connect to a streaming source and test how the analytic function reads from and writes to event
streams by using Streaming Data Framework for MATLAB Production Server functions.

3 Simulate the production environment for testing your streaming analytic algorithms (requires
MATLAB Compiler SDK).

4 Package the analytic function (requires MATLAB Compiler SDK) and deploy it to MATLAB
Production Server.

Install Streaming Data Framework for MATLAB Production Server

Install the Streaming Data Framework for MATLAB Production Server support package from the
MATLAB Add-On Explorer. For information about installing add-ons, see “Get and Manage Add-Ons”
(MATLAB).

After your installation is complete, find examples in support package root\toolbox\mps
\streaming\Examples, where support package root is the root folder of support packages on
your system.

System Requirements

Streaming Data Framework for MATLAB Production Server has the same system requirements as
MATLAB. For more information, see System Requirements for MATLAB.

Write Streaming Analytic MATLAB Function

The event stream analytic function typically consumes a stream of input events and can produce a
stream of output events. It can filter, transform, record, or process the stream of events by using any
MATLAB functionality that is deployable to MATLAB Production Server.

Event stream analytic functions process windows or batches of events. An event consists of three
parts:

* Key — Identifies the event source

* Timestamp — Indicates the time at which the event occurred

* Body — Contains event data, specified as an unordered set of (name, value) pairs

Analytic functions read events into a timetable. Each row of the timetable represents a streaming

event, typically in chronological order. If the analytic function produces results, they must also be
timetables.

When processing a stream, you can call an analytic function several times, because the window size is
typically much smaller than the number of messages in the stream. The stateless execution model of

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

Streaming Data Framework for MATLAB Production Server Basics

MATLAB Production Server isolates the processing of each window, so the processing of one window
does not affect the processing of the next. Stateful functions that require interaction between the
processing of consecutive windows specify a MATLAB structure that is preserved between windows
and passed to the next invocation of the analytic function.

An analytic function can have one of three signatures:

Function Signature Description

results = analyticFcn(data) Stateless analytic function that emits a stream of
results

[results, state] = analyticFcn(data, state) Stateful analytic function that preserves state

between batches and emits a stream of results

analyticFcn(data) Stateless analytic function that does not emit a
stream of results

Stateless Analytic Function

The following plotSierpinski function is an example of a stateless analytic function.
plotSierpinski plots the X and Y columns of the input timetable. The source code for this function
and a script to run it is located in the \Examples\ExportOptions folder.

function howMany = plotSierpinski(xyData)

hold on
arrayfun(@(x,y)plot(x,y, 'ro-', 'MarkerSize', 2), [xyData.X], [xyData.Y]);
hold off
drawnow
count = height(xyData);
howMany = timetable(xyData.Properties.RowTimes(end), count);
end

Stateful Analytic Function

The following recamanSum function is an example of a stateful analytic function. In stateful
functions, the data state is shared between events and past events can influence the way current
events are processed. recamanSum computes the cumulative sum of a numeric sequence. In returns
two values:

1 cSum — A table that contains the cumulative sum of the elements in the stream
2 state — A structure that contains the final value of the sequence

The source code for the recamanSum function, it initialization function initRecamanSum, and the
scripts used to run the analytic function are located in the \Examples\Numeric folder.

function [cSum, state] = recamanSum(data, state)
timestamp = data.Properties.RowTimes;
key = data.key;
sum = cumsum(data.R) + state.cumsum;

state.cumsum = sum(end);

cSum = timetable(timestamp, key, sum);
end

11-3

11 Streaming Topics

11-4

Process Kafka Events Using MATLAB

To process events from a stream, you create an object to connect to the stream, read events from the
stream, iterate the streaming analytic function to process the several windows of events, and, if the
analytic function produces results, create a different stream object to write the results to stream.

The following code sample gives an overview of processing one window of events using the
framework. Assume that you have a Kafka host running at the network address
kafka.host.com:9092 that has a topic recamanSum_data. Also, assume that the
recamanSum_data topic contains the first 1000 elements of the Recaman sequence..

1 Create a KafkaStream object for reading from and writing to the recamanSum_data topic.

inKS = kafkaStream("kafka.host.com",9092,"recamanSum data");

2 Read events from the recamanSum_data topic into a timetable tt.

tt = readtimetable(inkS);

3 Call the recamanSum function and calculate the cumulative sum of a part of Recaman's sequence
in tt. Since recamanSum is a stateful function, first call the initRecamSum function, which
initializes state.

state = initRecamanSum();
[results, state] = recamanSum(tt,state);

For a detailed example of how to process several windows of events, see “Process Kafka Events Using
MATLAB” on page 11-5.

Simulate Production Using Development Version of MATLAB
Production Server

Before deploying to MATLAB Production Server, you can test the streaming analytic function using
the development version of MATLAB Production Server, which acts as a local test server. For a
detailed example, see “Test Streaming Analytic Function Using Local Test Server” on page 11-12.

Deploy Streaming Analytic to MATLAB Production Server

You can also package the analytic function and deploy it to MATLAB Production Server. For a detailed
example, see “Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17.

See Also
readtimetable |writetimetable | kafkaStream | inMemoryStream | testStream

Related Examples

. “Process Kafka Events Using MATLAB” on page 11-5

. “Test Streaming Analytic Function Using Local Test Server” on page 11-12

. “Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17
. “Obtain Kafka Event Stream Log Files” on page 11-21

Process Kafka Events Using MATLAB

Process Kafka Events Using MATLAB

This example shows how to use the Streaming Data Framework for MATLAB Production Server to
process events from a Kafka stream. The example provides and explains the recamanSum and
initRecamanSum streaming analytic functions that process event streams, and the demoRecaman
script that creates event streams, validates event stream creation, uses the streaming analytic
function to process event streams, and writes the results to an output stream.

The example functions and script are located in the support package root\mps\streaming
\Examples\Numeric folder, where support package root is the root folder of support packages
on your system.

Prerequisites

* You must have Streaming Data Framework for MATLAB Production Server installed on your
system. For more information, see “Install Streaming Data Framework for MATLAB Production
Server” on page 11-2.

* You must have a running Kafka server where you have the necessary permissions to create topics.
The example assumes that the network address of your Kafka host is kafka.host.com:9092.

Write Streaming Analytic MATLAB Function

For this example, use the sample MATLAB functions recamanSum and initRecamanSum. Later, you
iterate the recamanSum streaming function over several events to compute results.

Write Stateful Function

The recamanSum function is stateful. In stateful functions, the data state is shared between events,
and past events can influence the way current events are processed. recamanSum computes the
cumulative sum of a numeric sequence in stream variable R, and returns a table cSum and structure
state. The table cSum contains the cumulative sum of the elements in R along with timestamps. The
structure state contains the final value of the sequence in its field cumsum.

function [cSum, state] = recamanSum(data, state)
timestamp = data.Properties.RowTimes;
key = data.key;
sum = cumsum(data.R) + state.cumsum;

state.cumsum = sum(end);

cSum = timetable(timestamp, key, sum);
end

Write State Initialization Function

The initRecamanSum function initializes state for the first iteration of the recamanSum function.

function state = initRecamanSum(config)
state.cumsum = 0;
end

11-5

11 Streaming Topics

Create Sample Stream Events

To run the example, you require sample streaming data. The demoRecaman script contains the
following code to create streaming data that consists of the first 1000 elements of Recaman's
sequence and also contains code to write the sequence to a Kafka topic recamanSum_data.

1 Set the Kafka hostname and port number.

kafkaHost "kafka.host.com";
kafkaPort 9092;

2 Create the first 1000 elements of Recaman's sequence.

To create the sequence, you can use the following recamanTimeTable function also located in
the \Examples\Numeric folder. recamanTimeTable creates a timetable containing the first N
elements of Recaman's sequence.

function tt = recamanTimeTable(N)
rs = zeros(1,N);
for k=2:N
n = k-1;
subtract = rs(k-1) - n;
if subtract > 0 && any(rs == subtract) == false
rs(k) = subtract;
else
rs(k) = rs(k-1) + n;
end
end

incr = seconds(1:N);

thisVeryInstant = ...
convertTo(datetime, "epochtime", "Epoch", "1970-1-1");
thisVeryInstant = datetime(thisVeryInstant, "ConvertFrom",...
"epochtime", "Epoch", "1970-1-1");

thisVeryInstant.TimeZone = "UTC";
timestamp = (thisVeryInstant - seconds(N)) + incr';

key = (0:N-1)"';
key = string(key);
R =rs';

tt = timetable(timestamp,R, key);

end
3 Store the results of recamanTimeTable in a timetable.

tt0 = recamanTimeTable(1000);

4 Create a stream object connected to the recamanSum_data topic. Later, you write the timetable
that contains the Recaman sequence to recamanSum_data.

datakKS = kafkaStream(kafkaHost, kafkaPort, "recamanSum data", Rows=100);
5 Ifthe recamanSum_data topic already exists, delete it.

try deleteTopic(datakS); catch, end
6 Write the entire Recaman sequence to the recamanSum_data topic.

11-6

Process Kafka Events Using MATLAB

writetimetable(dataKS, tt0);

Validate Sample Data Creation

To validate the sample stream events that you created, confirm that the first 100 rows that you read
from the recamanSum_data topic are the same as the sample data you created and wrote to the
recamanSum_data topic. The demoRecaman script contains the following code.

1 Read one window of data (100 rows) from the recamanSum_data topic into a timetable tt1.

ttl = readtimetable(dataks);
2 Check if the data read into tt1 is equal to the first 100 elements from the Recaman sequence
you wrote.

if isequal(ttO(1l:height(ttl),:), ttl)
fprintf(1l,"Success writing data to topic %s.\n", dataKS.Name);
end

3 Stop reading from the datakKs stream, since later you use datakKs to read again from the
recamanSum_data topic. Reading from the same topic using multiple streams is not permitted.

stop(dataksS);

Process Stream Events with Streaming Analytic Function

Iterate the recamanSum streaming analytic function multiple times to read the numeric sequence
from the input stream, compute its cumulative sum, and write the results to the output stream. The
demoRecaman script contains the following code.

1 Create an output stream connected to the recamanSum_results topic. Use
recamanSum_results to store the output of the recamanSum streaming function.

resultkKS = kafkaStream(kafkaHost, kafkaPort,"recamanSum results",
Rows=100) ;

2 Create an event stream processor to iterate the recamanSum streaming function over the input
topic connected to the stream datakKS. Write the results to the output topic connected to the
stream resultKS. Use a persistent storage connection named RR to store data state between
iterations.

rsp = eventStreamProcessor(datakS,@recamanSum,@initRecamanSum, ...
StateStore="RR",OQutputStream=resultkS);

3 Execute the stream function ten times. Since the window size, or the number of rows read at a
time, is 100, ten iterations consumes the entire sequence of 1000 elements.
fprintf (1, "Computing cumulative sum of Recaman sequence.\n");
execute(rsp, 10);

4 Delete the event stream processor. This shuts down StateStore, which is required to run this
script more than once in a row.
clear rsp;

5 Read the results from the output stream.

fprintf(1l,"Reading results from %s.\n", resultKS.Name);
tt2 = timetable.empty;
for n = 1:10

11-7

11 Streaming Topics

11-8

tt2 = [tt2 ; readtimetable(resultKS)];
end

cSum = cumsum(tt0.R);
if tt2(end,:).sum == cSum(end)
fprintf(1,"Cumulative sum computed successfully: %d.\n", ...
tt2(end, :).sum);
else
fprintf (1, "Expected cumulative sum %d. Computed %d instead.\n", ...
cSum(end), tt2(end,:).sum);
end

When you run the entire demoRecaman script, you see the following output.

Success writing data to topic recamanSum data.
Computing cumulative sum of Recaman sequence.
Reading results from recamanSum results.

Cumulative sum computed successfully: 837722.

See Also

readtimetable |writetimetable | kafkaStream | eventStreamProcessor | execute |
inMemoryStream | testStream

Related Examples

. “Test Streaming Analytic Function Using Local Test Server” on page 11-12
. “Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17
. “Obtain Kafka Event Stream Log Files” on page 11-21

Connect to Secure Kafka Cluster

Connect to Secure Kafka Cluster

To manage event stream processing tasks, Streaming Data Framework for MATLAB Production
Server requires configuration information. For example, to connect to a secure Kafka cluster, the
framework must know the security protocol and the SSL certificate to use. You provide this
information by setting provider properties when creating the stream connector object. After creating
the object, configuration properties are read-only. These properties are used during desktop
development and then collected for deployment into production.

You can provide configuration information using two types of properties of the stream and stream
processing objects:

* Named object properties — Properties required to create the MATLAB objects that interact with
the stream, such as the ConnectionTimeout property of the KafkaStream object.

* Third-party provider properties — Properties that are not properties of the MATLAB objects in the
streaming data framework, such as the retention.ms Kafka property or properties such as
security.protocol and ssl.truststore.type that are required to connect to a secure
Kafka cluster.

Kafka Provider Properties

When you create a KafkaStream object to connect to a Kafka host, specify Kafka provider properties
and their corresponding values using one or more propname, propval input argument pairs. Use
single-quotes or double-quotes around propname. You can specify several properties and their values
in any order as propnamel, propvall,...,propnameN, propvalN. For example,
kafkaStream(host,port,topic,"sasl.mechanism","SCRAM-SHA-512") sets the Kafka
property sasl.mechanismto SCRAM-SHA-512. For a complete list of Kafka properties, seeKafka
Configuration in the Kafka documentation . The streaming framework provides a pass-through
mechanism for these properties, where they are passed directly to the Kafka configuration
mechanism without any validation.

Connect to Secure Kafka Cluster

When creating an object to connect to a secure Kafka cluster, the Kafka properties that you specify
differ based on these factors:

* Whether the Kafka cluster is secured using TLS or SASL

* Whether you use the object to read from the stream or write to the stream

* Whether when using the object to read, you set the Order property of a KafkaStream object to
"EventTime" or "IngestTime".

Read Events from SSL-Secured Kafka Cluster

Specify the following Kafka properties when creating an object to read from the Kafka stream.

* security.protocol — Set the security protocol to SSL.
* ssl.truststore.type — Set the file format of the truststore file to SSL or JKS.

* ssl.truststore.location — If your server certificate is not present in your system truststore,
set the location of the truststore file.

11-9

https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_retention.ms
https://kafka.apache.org/32/documentation/#consumerconfigs_security.protocol
https://kafka.apache.org/32/documentation/#consumerconfigs_ssl.truststore.type
https://kafka.apache.org/documentation/#configuration
https://kafka.apache.org/documentation/#configuration

11 Streaming Topics

11-10

For example, the following syntax creates an object to read events from a recamanSum_data topic
on a Kafka host located at network address kafka.host.com:9093 in an SSL-secured cluster.

ks read = kafkaStream("kafka.host.com",9093,"recamanSum data",
"security.protocol","SSL","ssl.truststore.type", "PEM",
"ssl.truststore.location", "mps-kafka.pem")

Write Events to SSL-Secured Kafka Cluster

Specify the following Kafka properties when creating an object to write to the stream or to read from
the stream when Order="IngestTime".

* security.protocol — Set the security protocol to SSL.
* ssl.ca.location — Set the location of the certificate authority (CA) root certificate.

For example, the following syntax creates an object to write events to a recamanSum_results topic
on a Kafka host located at the network address kafka.host.com:9093 in an SSL-secured cluster.

outKS = kafkaStream("kafka.host.com",9093,"recamanSum results",
"security.protocol","SSL",

"ssl.ca.location","my-ssl-cert.pem");
Read Events from SASL-Secured Kafka Cluster

To create an object to read from a SASL-secured Kafka cluster, setting the sasl.jaas.config Kafka
property is required. The value of the sasl.jaas.config property is long, structured, and difficult
to type. To make it easier to provide the sasl.jaas.config value, the framework provides two
properties, sasl.user and sasl.password, that you can set instead. The framework synthesizes
the value for the sasl.jaas.config property using the values of sasl.user, sasl.password,
security.protocol, and sasl.mechanism.

Specify the following Kafka properties when creating an object to read from the stream.

* security.protocol — Set the security protocol to SASL.
* ssl.truststore.type — Set the file format of the truststore file to SSL or JKS.

*+ ssl.truststore.location — If your server certificate is not present in your system truststore,
set the location of the truststore file.

* sasl.mechanism — Set the SASL mechanism used for client connections.
* sasl.user — Set the SASL-authorized username.
* sasl.password — Set the SASL password for sasl.user.

For example, the following syntax creates an object to read events from the recamanSum_data topic
on a Kafka host located at the network address kafka.host.com:9093 in a SASL-secured cluster.

inKS_sasl = kafkaStream("kafka.host.com",9093,"recamanSum data",
"security.protocol","SASL SSL",
"ssl.truststore.type","PEM", ...
"ssl.truststore.location","my-ssl-cert.pem",
"sasl.mechanism", "SCRAM-SHA-512",
"sasl.user","sasl-consumer",
"sasl.password", "apachekafka")

https://kafka.apache.org/32/documentation/#brokerconfigs_sasl.jaas.config

Connect to Secure Kafka Cluster

Write Events to SASL-Secured Kafka Cluster

Specify the following Kafka properties when creating an object to write to the stream or to read from
the stream when Order="IngestTime".

* security.protocol — Set the security protocol to SASL.

* ssl.ca.location — Set the location of the CA root certificate.

* sasl.mechanism — Set the SASL mechanism used for client connections.

* sasl.user — Set the SASL-authorized username.

* sasl.password — Set the SASL password for sasl.user.

For example, the following syntax creates an object to write events to the recamanSum_results

topic on a Kafka host located at the network address kafka.host.com:9093 in a SASL-secured
cluster.

outKS sasl = kafkaStream("kafka.host.com",9093,"recamanSum results",
"security.protocol","SASL SSL",
"ssl.ca.location","my-ssl-cert.pem",
"sasl.mechanism", "SCRAM-SHA-512",
"sasl.user","sasl-producer",
"sasl.password", "apachekafka")

Client-Side Authentication

To enable client-side authentication, you must set the ss1.keystore.location property to the
location of your client certificate, the certificate the client must send to the server. If your server or
client certificates are password protected, you might also need to set the
ssl.truststore.password property and the ss1.keystore.password property.

See Also
getProviderProperties | categorylList | isProperty | kafkaStream

Related Examples
. “Process Kafka Events Using MATLAB” on page 11-5

External Websites
. Kafka Configuration

11-11

https://kafka.apache.org/documentation/#brokerconfigs_ssl.keystore.location
https://kafka.apache.org/documentation/#brokerconfigs_ssl.truststore.password
https://kafka.apache.org/documentation/#producerconfigs_ssl.keystore.password
https://kafka.apache.org/documentation/#configuration

11 Streaming Topics

Test Streaming Analytic Function Using Local Test Server

11-12

This example shows how to use the development version of MATLAB Production Server to test a
streaming analytic function before deployment to MATLAB Production Server. MATLAB Compiler
SDK includes the development version of MATLAB Production Server, which you can use as a local
test server for testing and debugging application code before deploying it to enterprise systems.

Prerequisites

* You must have Streaming Data Framework for MATLAB Production Server installed on your
system. For more information, see “Install Streaming Data Framework for MATLAB Production
Server” on page 11-2.

* You must have a running Kafka server where you have the necessary permissions to create topics.
The example assumes that the network address of your Kafka host is kafka.host.com:9092.

Write Streaming Analytic MATLAB Function

For testing purposes, use the sample MATLAB functions recamanSum and initRecamanSum located
in the support package root\mps\streaming\Examples\Numeric folder, where

support package root is the root folder of support packages on your system. Later, you test the
recamanSum deployable archive using the local test server.

For details about the recamanSum and initRecamanSum functions and to access the code, see
“Write Stateful Function” on page 11-5 and “Write State Initialization Function” on page 11-5.

Create Sample Streaming Data

Prepare for testing by creating sample data and writing the data to a Kafka stream. For this example,
you create a 1000-element Recaman sequence and write it to a Kafka topic recamanSum data.

To create the Recaman sequence, you can use the following recamanTimeTable function, which is
also located in the \Examples\Numeric folder. recamanTimeTable creates a timetable containing
the first N elements of a Recaman sequence.

function tt = recamanTimeTable(N)
rs = zeros(1,N);
for k=2:N
n =k-1;
subtract = rs(k-1) - n;
if subtract > 0 && any(rs == subtract) == false
rs(k) = subtract;
else
rs(k) = rs(k-1) + n;
end
end

incr = seconds(1:N);

thisVeryInstant = ...
convertTo(datetime, "epochtime", "Epoch", "1970-1-1");
thisVeryInstant = datetime(thisVeryInstant, "ConvertFrom",...
"epochtime", "Epoch", "1970-1-1");

Test Streaming Analytic Function Using Local Test Server

end

thisVeryInstant.TimeZone = "UTC";
timestamp = (thisVeryInstant - seconds(N)) + incr';

key = (0:N-1)"';
key = string(key);
R=rs';

tt = timetable(timestamp,R, key);

You can use the following code to create a 1000-element Recaman sequence using the
recamanTimeTable function and write it to the recamanSum_data Kafka topic. The example
assumes that you have Kafka host running at the network address kafka.host.com:9092 and you
have the necessary permissions to create topics in the Kafka cluster.

kafkaHost = "kafka.host.com";
kafkaPort = 9092;
tt0 = recamanTimeTable(1000);

dataKS = kafkaStream(kafkaHost, kafkaPort, "recamanSum data", Rows=100);

try deleteTopic(dataKS); catch, end

writetimetable(datakKS, tt0);

ttl

= readtimetable(dataks);

if isequal(ttO(1l:height(ttl),:), ttl)

end

fprintf(1l,"Success writing data to topic %s.\n", dataKS.Name);

stop(dataks);

Simulate Production Using Local Test Server

To simulate streaming data processing in a production environment, you can run the recamanSum
deployable archive using the development version of MATLAB Production Server and process data
from the recamanSum_data topic.

1

Create a KafkaStream object connected to the recamanSum_data topic.

ks = kafkaStream("kafka.host.com",9092,"recamanSum data");
Create another KafkaStream object to write the results of the recamanSum analytic function to
a different topic called recaman_results.

outKS = kafkaStream("kafka.host.com",9092,"recamanSum results");
Create an EventStreamProcessor object that runs the recamanSum function and initializes
persistent state with the initRecamanSum function.

Providing a persistent data storage connection name as an input argument is optional. If you do
not provide one, EventStreamProcessor creates a connection with a unique name to cache the
data state between iterations.

esp = eventStreamProcessor(ks,@recamanSum,@initRecamanSum,OutputStream=outKS);
Using the MATLAB editor, you can set breakpoints in the recamanSum function to examine the
incoming streaming data when you start the server.

11-13

11 Streaming Topics

5 Start the test server.
startServer(esp);

Doing so opens the Production Server Compiler app with values for the streaming function
recamanSum, the entry point function streamfcn, and the deployable archive recamanSum.

4\ Production Server Compiler - recamanSum.prj

COMPILER

) I:| ™ E ™ Deployable Archive (.ctf) 5 streamfen.m I:';'i @ g W
ﬁ Deployable Archive with Excel Integration .
MNew Open Save Settings Test Package
* Project * Client
FILE TVPE EXPORTED FUNCTIONS SETTINGS =~ TEST PACKAGF
recamanSum

Additional files required for your archive to run

f‘_'] initRecamanSum.m _] rdkafkalog.proper.. ﬂ recamanSum.m I_L‘] recamanSumConfi...

Files packaged for redistribution

jcnllecmr.properties = kafka-connector-s.. ¥ * kafka-connector-s.. jlog4j.propenie&te... ﬂrecamanﬁum.cﬂ

_'] connector.properti... 4 kafka-connector-s.. J kafka.properties _7 rdkafkalog.proper...

__lslkaflea-connector-j.. 4 kafka-connector-s... _‘Ikafka.proper_t[g;.:e_-']_m_agmg__m

6 Start the test server from the app by clicking Test Client, and then Start.
7 Navigate back to the MATLAB command prompt to start processing events.

start(esp);

In the Production Server Compiler app, you can see that the test server receives data.

11-14

Test Streaming Analytic Function Using Local Test Server

4\ Production Server Compiler - recamanSum. prj

COMPILER TEST

oo | FY @ 3

Enable CORS Breakpoints Stop Close

Enable Discovery - Test

SERVER COMFIGURATION SERVER ACTIONS CLOSE

Server Address

Accepting client connections on: http://localhost:9910/recamanSum

MATLAB Execution Requests

D Function Status
=] SIreamuomiwinuow) W LU
9 streamfen(window) @ complete
10 streamfen(window) O Complete
1n streamfen(window) 0 Complete
12 streamfen(window) 'Q Complete

13 streamfen(window) - . /] Complete

- -_""'4nd::|_\u__g _ e (] Complete _.
— S— -

8 From the MATLAB editor, if you had set breakpoints, you can use the debugger to examine the
data, state, and results of the function processing. Click Continue to continue debugging or
Stop when you have finished debugging.

9 From the MATLAB command prompt, stop event processing and shut down the server.

stop(esp);
stopServer(esp);
10 Read the processed results from the output stream.

results = readtimetable(outKS);

results

50x2 timetable

timestamp key sum
20-Jan-1970 04:55:08 "e" 0
20-Jan-1970 04:55:08 "1t 1
20-Jan-1970 04:55:08 "2 4
20-Jan-1970 04:55:08 "3 10
20-Jan-1970 04:55:08 "4 12
20-Jan-1970 04:55:08 "45" 1697
20-Jan-1970 04:55:08 "46" 1732
20-Jan-1970 04:55:08 "47" 1814
20-Jan-1970 04:55:08 "48" 1848
20-Jan-1970 04:55:08 "49" 1931

Display all 50 rows.

11-15

11 Streaming Topics

See Also

kafkaStream | eventStreamProcessor | execute | package | seek | start | startServer |
stop | stopServer

Related Examples
. “Deploy Streaming Analytic Function to MATLAB Production Server” on page 11-17

11-16

Deploy Streaming Analytic Function to MATLAB Production Server

Deploy Streaming Analytic Function to MATLAB Production
Server

You can package streaming analytic functions developed using Streaming Data Framework for
MATLAB Production Server and deploy the packaged archive (CTF file) to MATLAB Production
Server. The deployed archive expects to receive streaming data. The Kafka Connector executable
pulls data from a Kafka host and pushes it to the deployed streaming archive. In the MATLAB
desktop, Streaming Data Framework for MATLAB Production Server manages the Kafka connector.
On a server instance, you must manage starting and stopping the Kafka .

The topic describes the Kafka connector and provides an example to process streaming data using a
stateful streaming analytic function deployed to the server.

Kafka Connector Specifications

The Kafka connector is a Java program that requires at least Java 8. To use the Kafka connector, the
JAVA HOME environment variable on your server machine must be set to the path of your Java 8
installation.

Each deployed archive that contains a streaming analytic function requires its own Kafka connector.
For example, if you have two archives, you require two connectors. You do not have to install the
Kafka connector twice, but you must run it twice and have exactly one Kafka connector configuration
file per archive.

The life cycle management of the Kafka connector depends on your production environment.
Streaming Data Framework for MATLAB Production Server provides tools to make starting, stopping,
and controlling the Kafka connector easier.

Prerequisites for Running Example

The following example provides a sample stateful streaming analytic function, shows how to package
and deploy it to MATLAB Production Server, and shows how to manage the Kafka connector on the
server.

To run the example, you require sample streaming data and a running MATLAB Production Server
instance with a running persistence service.

Create Sample Streaming Data

Create sample streaming data and write the data to a Kafka stream. For this example, you create a
1000-element Recaman sequence and write it to a Kafka topic recamanSum_data. For details about
creating the streaming data, see “Create Sample Streaming Data” on page 11-12.

Create Server Instance

Create a MATLAB Production Server instance to host the streaming deployable archive. For details
about creating a server instance using the command line, see “Set Up MATLAB Production Server

Using the Command Line”. For details about creating a server instance using the dashboard, see
“Create Server Instance Using Dashboard”.

11-17

11 Streaming Topics

11-18

Start Persistence Service

Create a persistence service on the server instance and name the persistence connection RR. Start
the persistence service. Later, when you package the streaming function into a deployable archive,
you use the RR connection name. For details about creating and starting a persistence service, see
“Data Caching Basics” on page 6-2.

Start Server Instance

Start the server instance that you created. For details about starting a server instance using the
command line, see “Start Server Instance Using Command Line”. For details about starting a server
instance using the dashboard, see “Start Server Instance Using Dashboard”.

Write Streaming Analytic MATLAB Function

For this example, use the sample MATLAB functions recamanSum and initRecamanSum, which are
located in the support package root\toolbox\mps\streaming\Examples\Numeric folder,
where support package root is the root folder of support packages on your system. Later, you
package the recamanSum function and deploy it to MATLAB Production Server.

For details about the recamanSum and initRecamanSum functions and to access the code, see
“Write Stateful Function” on page 11-5 and “Write State Initialization Function” on page 11-5.

Package Streaming Analytic Function

To package the recamanSum streaming analytic into a deployable archive, you can run the following
script. The script creates an input KafkaStream object dataKS connected to the recamanSum_data
topic and an output KafkaStream object resultKS connected to the recamanSum_results topic.
Then, the script uses the streamingDataCompiler function to launch the Production Server
Compiler app. Using the app, you create a deployable archive recamanSum. ctf suitable for
deployment to MATLAB Production Server. Provide the StateStore input argument in the call to
streamingDatacompiler and set its value to RR. RR is the persistence connection name you
created in “Start Persistence Service” on page 11-18.

kafkaHost
kafkaPort

"kafka.host.com";
9092;

datakKS = kafkaStream(kafkaHost, kafkaPort, "recamanSum data", Rows=100);

resultkS = kafkaStream(kafkaHost, kafkaPort, "recamanSum results",
Rows=100) ;

archive = streamingDataCompiler("recamanSum", dataKS, resultkKsS,
InitialState="initRecamanSum", StateStore="RR");

From the Production Server Compiler app, click Package to create the recamanSum archive.
When the packaging process finishes, open the output folder. In the output folder, navigate to the
for _distribution folder. The for distribution folder contains the recamanSum.ctf
deployable archive and Kafka connector scripts that you use later.

Deploy Streaming Analytic Function to MATLAB Production Server

Production Server Compiler - recamanSum.p — O >
Em 200 0 00 o ze]
joos _ _ - ﬁ Py

E:]ZI 3 % 1% Deployable Archvr_- (.I :) streamfen.m ek @ (E::j} v
L% Deployable Archive with Excel Integration
MNew Open Save Settings Test | Package
* Project = Client
FILE TYPE EXPORTED FUNCTIONS SETTINGS | TEST @ PACKAGE
Package *
E
.- 84¢ _—
recamansum i E
L L L
Additional files required for yo! _
. Open cutput folder.
%) initRecamanSum... |]r
Open cutput folder when process completes

Deploy Streaming Analytic Function to Server

Deploy the recamanSum archive to a running MATLAB Production Server instance. If you manage the
server using the command line, copy the recamanSum archive to the auto_deploy folder of your
server instance. For other ways to deploy, see “Deploy Archive to MATLAB Production Server”.

Start Kafka Connector

Depending on the operating system of your server instance, enter the following commands at the
system prompt to start the Kafka connector script kafka-connector-start. The Kafka connector
pulls data from the Kafka host and pushes it to the deployed streaming archive.

The output of the start script is a process ID (PID). Save the value of the PID. You use this ID to stop
the Kafka Connector process later.

Windows
powershell -executionPolicy bypass -File kafka-connector-start.psl -out out.log -err error.log -
Linux

chmod +x kafka-connector-start.sh

./kafka-connector-start.sh -out out.log -err error.log -c collector.properties -k kafka.propert:

Read Processed Data From Output Stream

After you start the Kafka Connector, the server starts receiving several requests. The deployed
recamanSum archive receives streaming data from the input Kafka stream as input and calculates the
cumulative sum of the Recaman sequence. Wait a few seconds for the server to finish processing
these requests.

11-19

11 Streaming Topics

11-20

Create another KafkaStream object to read the result from the output topic.
readStream = kafkaStream("kafka.host.com", 9092, "recamanSum results");

Call readtimetable to read the output data.

result = readtimetable(readStream)

Stop Kafka Connector

Depending on the operating system of your server instance, enter the following commands at the
system prompt to stop the Kafka Connector script kafka-connector-stop. Replace PID with the
process ID that you save when you start the connector.

Windows
powershell -executionPolicy bypass -File kafka-connector-stop.psl PID
Linux

chmod +x kafka-connector-stop.sh

./kafka-connector-stop.sh PID

See Also
streamingDataCompiler | package

Related Examples

. “Test Streaming Analytic Function Using Local Test Server” on page 11-12

Obtain Kafka Event Stream Log Files

Obtain Kafka Event Stream Log Files

When processing Kafka stream events using a KafkaStream object, use log files to help debug event
streaming issues. These files contain all warnings, errors, and other information related to reading
and writing events to and from Kafka streams. You can generate log files from these sources:

+ KafkaStream objects connected to the Kafka topic — Each object generates a log file containing
information about reads from the Kafka server.

* librdkafka Kafka C/C++ client library — This library generates a log file containing information
about writes from the Kafka server.

For both sources, you can configure the log level, which controls the amount of output written to the
log files. You can set these log levels, listed in order from least to most verbose:

off — Logging not enabled (default for Librdkafka library)

fatal — Log only errors that force the Kafka connection to shut down

error — Log all errors (default for kafkaSt ream objects)

warn — Log all errors and warnings

info — Log errors, warnings, and high-level information about major streaming activities
debug — Log debugging information in addition to information in previously described options

N o o A W N R

trace — Log stack trace information in addition to information in previously described options

You can also configure the log level in your deployed applications.

Configure kafkaStream Object Logging

The log file for each KafkaStream object is generated to this file in your current folder.
log\topic _name.log

topic _name is the name of the Kafka topic that the KafkaSt ream object is connected to. If the log
folder does not exist, the KafkaStream object creates it.

By default, the log level for these objects is set to error. To change the log level, update the
log4j.properties.template file contained in your installation of Streaming Data Framework for
MATLAB Production Server. The file is located at this path:

support package root/+matlab/+io/+stream/+event/+kafka/collector/log4j.properties.template

support package root is the root folder for add-ons on your system. To find your root folder, see
“Default Add-On Installation Folder” (MATLAB).

To change the log level in the Log4j.properties.template file, you must update the log level in
all locations where the log level is specified. For example, to change the log level from error to
debug, in the log4j.properties.template file, search for the lines containing this code.

.level = error

Within each line, update this code to the following:

.level = debug

11-21

11 Streaming Topics

11-22

Alternatively, to quickly review information only about the last error received from the Kafka topic,
use the loggederror function. Pass your KafkaStream object as an input argument to this
function.

To generate the logs, the streaming data framework uses version 2 of the Log4j Java library. For more
details on this library, see https://logging.apache.org/log4j/2.x/.

Configure librdkafka Library Logging

When logging for the librdkafka library is enabled, the library generates a single file in the current
folder named mw_rdkafka. log. If the log file does not already exist, the KafkaSt ream object
creates it.

By default, the log level for the librdkafka library is set to of f. To enabled logging, use this
MATLAB command:

matlab.io.stream.event.kafka.internal.admin(log=1logLevel);

logLevel is a string or character vector indicating the log level described earlier, such as "error",
"warn" or "debug". For example, setting LogLevel to "debug" enables logging and sets the log
level to debug mode.

Configure Logging in Deployed Applications

When you package a deployed application using a project file created by the package or
streamingDataCompiler functions, the packaging process copies configuration files into the

for redistribution folder of your application. You use these files when you start the Kafka
Connector to push streaming data from your Kafka topic to your application hosted by MATLAB
Production Server. To enable logging in the Kafka Connector, copy the
log4j.properties.template file to a new file named log4j.properties. Then, edit this new
file to choose the log level and set the name of the log file.

To set the log level, set the *. level properties to the desired log level, as described in the
“Configure kafkaStream Object Logging” on page 11-21 section. To set the name of the log file,
change the text !|ArchiveName! to the name of the desired log file. The 'ArchiveName! text
appears on these lines:

appender.rolling.fileName = ${basePath}!ArchiveName!.out
appender.rolling.filePattern = ${basePath}!ArchiveName!%i.out

For example, to send output log messages to the file RecamanSum. out, change these lines to:

appender.rolling.fileName = ${basePath}RecamanSum.out
appender.rolling.filePattern = ${basePath}RecamanSum%i.out

To control librdkafka logging, edit the rdkafkalog.properties file, which is located at this
path:

support package root/+matlab/+io/+stream/+event/+kafka/collector/rdkafkalog.properties

This file is installed with read-only access, so you must make the file writeable before editing it. For
your changes to take effect, you must edit this file before using the package or
streamingDataCompiler function to create the deployable archive. Packaging incorporates the
rdkafka.properties file into your application. Although you cannot change this file after

https://logging.apache.org/log4j/2.x/

Obtain Kafka Event Stream Log Files

packaging, you can use an environment variable to control the location from which MATLAB

Production Server loads the rdkafka.properties file.

You can change the log level and log file name by setting values in rdkafka.properties. For

example, to change the log level from fatal (default) to info, change the level=fatal line to

level=info.

Similarly, the file property sets the full path to the output log file. The default is mw_rdkafka.log,

as in:

file=mw_rdkafka.log

With no folder specification, this file is in the top-level folder of the MATLAB Production Server
instance that hosts the deployed streaming application, which is the parent folder of the

auto deploy folder. If you deploy multiple streaming applications to the same MATLAB Production
Server instance, make this filename application-specific. For example:

file=recamanSum_rdkafka.log

If you leave the filename unchanged, this file is shared by all streaming applications hosted by that

SEerver.

To change the folder where the file appears, specify a full or relative path using platform-appropriate

syntax.

Windows

Linux or Mac

file=c:\mps logs
\recamanSum_rdkafka.log

file=/myusername/mps logs/
recamanSum_ rdkafka.log

To temporarily change the location from which MATLAB Production Server loads the
rdkafka.properties file, use the environment variable MW TOSTREAM RDKAFKA LOG CONFIG.
You must set this environment variable before you start the MATLAB Production Server instance
hosting your application. You must also set this variable in the environment from which you start that
instance. Otherwise, MATLAB Production Server is unable to locate the environment variable. This

environment variable setting changes the location of rdkafka.properties for all applications

hosted by that instance of MATLAB Production Server. Use this environment variable for temporary

troubleshooting only.

To temporarily cause all streaming applications to configure rdkafka logging according to the file
and log level set in a nondeployed rdkafka.properties file, set

MW TOSTREAM RDKAFKA LOG_CONFIG to the full path of the nondeployed file. For example:

Windows

Linux or Mac

set MW _IOSTREAM RDKAFKA LOG CONFIG=c:\mps logs\recama

SanemdkMifkB03BBEAM_RDKAFKA LOG_CONFIG /myusername/mps |

| Llogs/recaman

Provide Log Files to MathWorks Technical Support

For additional help debugging, you can provide your log files to MathWorks Technical Support. Before

providing the log files, set the log level to trace.

1 Locate the log files, using the previously provided information.

2 Attach the log files to a new or existing ticket for MathWorks Technical Support. See Contact

Support.

11-23

https://www.mathworks.com/support/contact_us.html
https://www.mathworks.com/support/contact_us.html

11 Streaming Topics

See Also
loggederror

11-24

	Create a Deployable Archive from MATLAB Production Server Code
	Create Deployable Archive for MATLAB Production Server
	Create MATLAB Function
	Create Deployable Archive with Production Server Compiler App
	Customize Application and Its Appearance
	Package Application
	Create Deployable Archive Using compiler.build.productionServerArchive
	Compatibility Considerations

	Package Deployable Archives with Production Server Compiler App
	Create Function In MATLAB
	Create Deployable Archive with Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application

	Package Deployable Archives from Command Line
	Execute Compiler Projects with deploytool
	Package a Deployable Archive with mcc
	Differences Between Compiler Apps and Command Line

	Modifying Deployed Functions
	Use Parallel Computing Resources in Deployable Archives
	Use Profile Available in Cluster Profile Manager
	Link to Exported Profile
	Reuse Existing Parallel Pool in Deployable Archive
	Limitations

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	Advanced Uses of the Command Line Compiler
	Simplify Compilation Using Macros
	Macros
	Working With Macros

	Invoke MATLAB Build Options
	Specify Full Path Names to Build MATLAB Code
	Using Bundles to Build MATLAB Code

	MATLAB Runtime Component Cache and Deployable Archive Embedding
	Overriding Default Behavior
	For More Information

	mcc Command Arguments Listed Alphabetically
	Packaging Log and Output Folders

	Functions
	compiler.build.productionServerArchive
	compiler.build.ProductionServerArchiveOptions
	compiler.build.Results
	productionServerCompiler
	deploytool
	mcc

	Apps
	Production Server Compiler

	Persistence
	Data Caching Basics
	Typical Workflow for Data Caching
	Configure Server to Use Redis
	Example: Increment Counter Using Data Cache

	Manage Application State in Deployed Archives
	Step 1: Write MATLAB Code that uses Persistence Functions
	Step 2: Run Example in Testing Workflow
	Step 3: Run Example in Deployment Workflow

	Handle Custom Routes and Payloads in HTTP Requests
	Write MATLAB Function for Web Request Handler
	Configure Server for URL Routes
	End-to-End Setup for Web Request Handler

	Persistence Functions
	mps.cache.DataCache
	mps.cache.Controller
	mps.cache.connect
	mps.cache.control
	attach
	detach
	start
	stop
	restart
	ping
	version
	bytes
	clear
	flush
	get
	getp
	isKey
	keys
	length
	countRemoteKeys
	purge
	put
	remove
	retain
	mps.sync.mutex
	mps.sync.TimedRedisMutex
	mps.sync.TimedMATFileMutex
	acquire
	own
	release

	MATLAB Client
	Connect MATLAB Session to MATLAB Production Server
	When to Use MATLAB Client for MATLAB Production Server
	Install MATLAB Client for MATLAB Production Server
	Connect MATLAB Session to MATLAB Production Server
	System Requirements
	Synchronous Function Execution
	Supported Data Types

	Execute Deployed MATLAB Functions
	Install MATLAB Client for MATLAB Production Server
	Deploy MATLAB Function on Server
	Install MATLAB Production Server Add-On for the Deployable Archive
	Manage Installed Add-On
	Invoke Deployed MATLAB Function

	Configure Client-Server Communication
	Configure Timeouts and Retries
	Update Server Configuration

	Application Access Control
	Prerequisites
	Configure Access Control

	Execute Deployed Functions Using HTTPS
	Save SSL Certificate of Server
	Install Add-On Using HTTPS
	Manage Default Protocol for Client-Server Communication

	Manage Add-Ons
	Install Add-Ons
	Remove Add-Ons
	Get Information about Add-Ons
	Manage Add-Ons
	Manage Access to Applications Deployed on Server

	Deploy Add-Ons
	Prerequisites
	Create Standalone Executables That Use Add-Ons
	Create Shared Libraries or Software Components That Use Add-Ons
	Create Deployable Archives That Use Add-Ons

	MATLAB Client Functions
	prodserver.addon.accessTokenPolicy
	prodserver.addon.availableAddOns
	prodserver.addon.Explorer
	prodserver.addon.get
	prodserver.addon.install
	prodserver.addon.installFolder
	prodserver.addon.isAddOnFcn
	prodserver.addon.isInstalled
	prodserver.addon.set
	prodserver.addon.uninstall

	Streaming Functions
	categoryList
	createTopic
	deleteTopic
	detectExportOptions
	detectImportOptions
	eventStreamImportOptions
	eventStreamProcessor
	execute
	ExportOptions
	flush
	getProviderProperties
	getvartype
	identifyingName
	ImportOptions
	inMemoryStream
	isProperty
	kafkaStream
	loggederror
	package
	preview
	readevents
	readtimetable
	seek
	setProviderProperties
	seek
	setvartype
	start
	startServer
	streamingDataCompiler
	stop
	stop
	stopServer
	testStream
	writetimetable

	Streaming Topics
	Streaming Data Framework for MATLAB Production Server Basics
	Install Streaming Data Framework for MATLAB Production Server
	System Requirements
	Write Streaming Analytic MATLAB Function
	Process Kafka Events Using MATLAB
	Simulate Production Using Development Version of MATLAB Production Server
	Deploy Streaming Analytic to MATLAB Production Server

	Process Kafka Events Using MATLAB
	Prerequisites
	Write Streaming Analytic MATLAB Function
	Create Sample Stream Events
	Validate Sample Data Creation
	Process Stream Events with Streaming Analytic Function

	Connect to Secure Kafka Cluster
	Kafka Provider Properties
	Connect to Secure Kafka Cluster

	Test Streaming Analytic Function Using Local Test Server
	Prerequisites
	Write Streaming Analytic MATLAB Function
	Create Sample Streaming Data
	Simulate Production Using Local Test Server

	Deploy Streaming Analytic Function to MATLAB Production Server
	Kafka Connector Specifications
	Prerequisites for Running Example
	Write Streaming Analytic MATLAB Function
	Package Streaming Analytic Function
	Deploy Streaming Analytic Function to Server
	Start Kafka Connector
	Read Processed Data From Output Stream
	Stop Kafka Connector

	Obtain Kafka Event Stream Log Files
	Configure kafkaStream Object Logging
	Configure librdkafka Library Logging
	Configure Logging in Deployed Applications
	Provide Log Files to MathWorks Technical Support

